

Mastering Ansible
Third Edition

Effectively automate configuration management and deployment challenges
with Ansible 2.7

James Freeman
Jesse Keating

BIRMINGHAM - MUMBAI

Mastering Ansible Third Edition
Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any
means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or
reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the
information contained in this book is sold without warranty, either express or implied. Neither the authors, nor Packt Publishing
or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by
this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this
book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

Commissioning Editor: Vijin Boricha
Acquisition Editor: Meeta Rajani
Content Development Editor: Shubham Bhattacharya
Technical Editor: Sayali Thanekar
Copy Editor: Safis Editing
Project Coordinator: Nusaiba Ansari
Proofreader: Safis Editing
Indexer: Rekha Nair
Graphics: Jisha Chirayil
Production Coordinator: Tom Scaria

First published: November 2015
Second edition: March 2017
Third edition: March 2019

Production reference: 1220319

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78995-154-7

www.packtpub.com

http://www.packtpub.com

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books
and videos, as well as industry leading tools to help you plan your personal
development and advance your career. For more information, please visit our
website.

https://mapt.io/

Why subscribe?
Spend less time learning and more time coding with practical eBooks
and Videos from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

Packt.com
Did you know that Packt offers eBook versions of every book published, with
PDF and ePub files available? You can upgrade to the eBook version at www.pa
ckt.com and as a print book customer, you are entitled to a discount on the
eBook copy. Get in touch with us at customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters, and receive exclusive discounts and offers
on Packt books and eBooks.

http://www.packt.com
http://www.packt.com

Contributors

About the authors
James Freeman is an accomplished IT consultant with over 20 years'
experience in the technology industry. He has more than 5 years of first-hand
experience of solving real-world enterprise problems in production
environments using Ansible, frequently introducing Ansible as a new
technology to businesses and CTOs for the first time. In addition, he has
authored and facilitated bespoke Ansible workshops and training sessions,
and has presented at both international conferences and meetups on Ansible.

I would like to thank my other half, Neeshia Jasmara, for her support, without which this book would
probably never have happened; my sons, Sam and Jaedyn, for their continued patience while I have my
head in a computer; and my employer, Quru, and especially our founder, Roland Whitehead, who have
provided me with the opportunities that enabled me to write this book.

Jesse Keating is an accomplished Ansible user, contributor, and presenter.
He has been an active member of the Linux and open source community for
over 15 years. He has first- hand experience involving a variety of IT
activities, software development, and large-scale system administration. He
has presented at numerous conferences and meetups, and has written many
articles on a variety of topics.

About the reviewer
Timothy Rupp has been working in various fields of computing for the last
15 years. He has held positions in cybersecurity and software engineering, as
well as in the fields of cloud computing and DevOps.

He was first introduced to Ansible while at Rackspace. As part of the cloud
engineering team, he made extensive use of a tool for deploying new capacity
to the Rackspace public cloud. Since that introduction, he has contributed
patches, provided support for, and presented on Ansible topics at local
meetups.

While at F5 Networks, he led the development of F5's Ansible modules and
became a core contributor to the Ansible project. Most recently, he has
become reinvolved with cybersecurity in the financial sector.

Packt is searching for authors like
you
If you're interested in becoming an author for Packt, please visit authors.packtp
ub.com and apply today. We have worked with thousands of developers and
tech professionals, just like you, to help them share their insight with the
global tech community. You can make a general application, apply for a
specific hot topic that we are recruiting an author for, or submit your own
idea.

http://authors.packtpub.com

Table of Contents
Title Page

Copyright and Credits

Mastering Ansible Third Edition

About Packt

Why subscribe?

Packt.com

Contributors

About the authors

About the reviewer

Packt is searching for authors like you

Preface

Who this book is for

What this book covers

To get the most out of this book

Download the example code files

Download the color images

Code in Action

Conventions used

Get in touch

Reviews

1. Section 1: Ansible Overview and Fundamentals

1. The System Architecture and Design of Ansible

Technical requirements

Ansible version and configuration

Inventory parsing and data sources

Static inventory

Inventory ordering

Inventory variable data

Dynamic inventories

Runtime inventory additions

Inventory limiting

Playbook parsing

Order of operations

Relative path assumptions

Play behavior directives

Execution strategies

Host selection for plays and tasks

Play and task names

Module transport and execution

Module reference

Module arguments

Module blacklisting

Module transport and execution

Task performance

Variable types and location

Variable types

Magic variables

Accessing external data

Variable precedence

Precedence order

Variable group priority ordering

Merging hashes

Summary

2. Protecting Your Secrets with Ansible

Technical requirements

Encrypting data at rest

Vault IDs and passwords

Things Vault can encrypt

Creating new encrypted files

Password prompt

Password file

Password script

Encrypting existing files

Editing encrypted files

Password rotation on encrypted files

Decrypting encrypted files

Executing Ansible-playbook with encrypted files

Mixing encrypted data with plain YAML

Protecting secrets while operating

Secrets transmitted to remote hosts

Secrets logged to remote or local files

Summary

3. Ansible and Windows - Not Just for Linux

Technical requirements

Running Ansible from Windows

Checking your build

Enabling WSL

Installing Linux under WSL

Setting up Windows hosts for Ansible control

System requirements for automation with Ansible

Enabling the WinRM listener

Connecting Ansible to Windows

Handling Windows authentication and encryption

Authentication mechanisms

A note on accounts

Certificate validation

Automating Windows tasks with Ansible

Picking the right module

Installing software

Extending beyond modules

Summary

4. Infrastructure Management for Enterprises with AWX

Technical requirements

Getting AWX up and running

Integrating AWX with your first playbook

Defining a project

Defining an inventory

Defining credentials

Defining a template

Going beyond the basics

Role-based access control (RBAC)

Organizations

Scheduling

Auditing

Surveys

Workflow templates

Notifications

Summary

2. Section 2: Writing and Troubleshooting Ansible Playbooks

5. Unlocking the Power of Jinja2 Templates

Technical requirements

Control structures

Conditionals

Inline conditionals

Loops

Filtering loop items

Loop indexing

Macros

Macro variables

name

arguments

defaults

catch_kwargs

catch_varargs

caller

Data manipulation

Syntax

Useful built-in filters

default

count

random

round

Useful Ansible provided custom filters

Filters related to task status

shuffle

Filters dealing with path names

basename

dirname

expanduser

Base64 encoding

Searching for content

Omitting undefined arguments

Python object methods

String methods

List methods

int and float methods

Comparing values

Comparisons

Logic

Tests

Summary

6. Controlling Task Conditions

Technical requirements

Defining a failure

Ignoring errors

Defining an error condition

Defining a change

Special handling of the command family

Suppressing a change

Error recovery

Using the rescue section

Using the always section

Handling unreliable environments

Iterative tasks with loops

Summary

7. Composing Reusable Ansible Content with Roles

Technical requirements

Task, handler, variable, and playbook inclusion concepts

Including tasks

Passing variable values to included tasks

Passing complex data to included tasks

Conditional task includes

Tagging included tasks

Task includes with loops

Including handlers

Including variables

vars_files

Dynamic vars_files inclusion

include_vars

extra-vars

Including playbooks

Roles

Role structure

Tasks

Handlers

Variables

Modules and plugins

Dependencies

Files and templates

Putting it all together

Role dependencies

Role dependency variables

Tags

Role dependency conditionals

Role application

Mixing roles and tasks

Role includes and imports

Role sharing

Ansible Galaxy

Summary

8. Troubleshooting Ansible

Technical requirements

Playbook logging and verbosity

Verbosity

Logging

Variable introspection

Variable subelements

Subelements versus Python object method

Debugging code execution

Playbook debugging

Debugging local code

Debugging inventory code

Debugging playbook code

Debugging executor code

Debugging remote code

Debugging the action plugins

Summary

9. Extending Ansible

Technical requirements

Developing modules

The basic module construct

Custom modules

Example – Simple module

Documenting a module

Providing fact data

The check mode

Supporting check mode

Handling check mode

Developing plugins

Connection-type plugins

Shell plugins

Lookup plugins

Vars plugins

Fact-caching plugins

Filter plugins

Callback plugins

Action plugins

Distributing plugins

Developing dynamic inventory plugins

Listing hosts

Listing host variables

Simple inventory plugin

Optimizing script performance

Contributing to the Ansible project

Contribution submissions

The Ansible repository

Executing tests

Unit tests

Integration tests

Code-style tests

Making a pull request

Summary

3. Section 3: Orchestration with Ansible

10. Minimizing Downtime with Rolling Deployments

Technical requirements

In-place upgrades

Expanding and contracting

Failing fast

The any_errors_fatal option

The max_fail_percentage option

Forcing handlers

Minimizing disruptions

Delaying a disruption

Running destructive tasks only once

Serializing single tasks

Summary

11. Infrastructure Provisioning

Technical requirements

Managing cloud infrastructures

Creating servers

Booting virtual servers

Adding to runtime inventory

Using OpenStack inventory sources

Managing a public cloud infrastructure

Interacting with Docker containers

Building images

Building containers without a Dockerfile

Docker inventory

Ansible Container

Using ansible-container init

Using ansible-container build

Using ansible-container run

Summary

12. Network Automation

Technical requirements

Ansible for network manage ment

Cross-platform support

Configuration portability

Backup, restore, and version control

Automated change requests

Handling multiple device types

Researching your modules

Configuring your modules

Writing your playbooks

Configuring Cumulus Networks switches with Ansible

Defining our inventory

Practical examples

Best practices

Inventory

Gathering facts

Jump hosts

Summary

Other Books You May Enjoy

Leave a review - let other readers know what you think

Preface
Welcome to Mastering Ansible, your guide to a collection of the most
valuable advanced features and functionalities provided by Ansible, the
automation and orchestration tool. This book will provide readers with the
knowledge and skills required to truly understand how Ansible functions at a
fundamental level. In turn, this will allow readers to master the advanced
capabilities needed to tackle the complex automation challenges of today, and
the future. Readers will gain knowledge of Ansible workflows, explore use
cases for advanced features, troubleshoot unexpected behavior, extend
Ansible through customization, and learn about many of the new and
important developments in Ansible, especially around infrastructure and
network provisioning.

Who this book is for
This book is for Ansible developers and operators who have an understanding
of the core elements and applications but are now looking to enhance their
skills in applying automation using Ansible.

What this book covers
Chapter 1, The System Architecture and Design of Ansible, looks at the ins and
outs of how Ansible goes about performing tasks on behalf of an engineer,
how it is designed, and how to work with inventory and variables.

Chapter 2, Protecting Your Secrets with Ansible, explores the tools available to
encrypt data at rest and prevent secrets from being revealed at runtime.

Chapter 3, Ansible and Windows - Not Just for Linux, explores the integration
of Ansible with Windows hosts to enable automation in cross-platform
environments.

Chapter 4, Infrastructure Management for Enterprises with AWX, provides an
overview of the powerful open source graphical management framework for
Ansible known as AWX, and how this might be employed in an enterprise
environment.

Chapter 5, Unlocking the Power of Jinja2 Templates, states the varied uses of
the Jinja2 templating engine within Ansible and discusses ways to make the
most out of its capabilities.

Chapter 6, Controlling Task Conditions, explains how to change the default
behavior of Ansible to customize task error and change conditions.

Chapter 7, Composing Reusable Ansible Content with Roles, explains how to
move beyond executing loosely-organized tasks on hosts, and instead to build
clean, reusable, and self-contained code structures known as roles to achieve
the same end result.

Chapter 8, Troubleshooting Ansible, takes you through the various methods
that can be employed to examine, introspect, modify, and debug the
operations of Ansible.

Chapter 9, Extending Ansible, covers the various ways in which new

capabilities can be added to Ansible via modules, plugins, and inventory
sources.

Chapter 10, Minimizing Downtime with Rolling Deployments, explains the
common deployment and upgrade strategies in order to showcase the relevant
Ansible features.

Chapter 11, Infrastructure Provisioning, examines cloud infrastructure
providers and container systems in order to create an infrastructure to
manage.

Chapter 12, Network Automation, describes the advancements in the
automation of network device configuration using Ansible.

To get the most out of this book
To follow the examples provided in this book, you will need access to a
computer platform capable of running Ansible. Currently, Ansible can be run
on any machine with Python 2.7 or Python 3 (versions 3.5 and
higher) installed (Windows is supported for the control machine, but only
through a Linux distribution running in the Windows Subsystem for Linux
(WSL) layer available on newer versions—see Chapter 3, Ansible and
Windows - Not Just for Linux, for details). Supported operating systems
include (but are not limited to) Red Hat, Debian, Ubuntu, CentOS, macOS,
and FreeBSD.

This book uses the Ansible 2.7.x.x series release. Ansible installation
instructions can be found at https://docs.ansible.com/ansible/intro_installation.htm
l.

Some examples use Docker version 1.13.1. Docker installation instructions
can be found at https://docs.docker.com/install/.

A handful of examples in this book make use of accounts on both Amazon
Web Services (AWS) and Microsoft Azure. More information about these
services may be found at https://aws.amazon.com and https://azure.microsoft.com
respectively. We also delve into management of OpenStack with Ansible,
and the examples in this book were tested against a single "all-in-one"
instance of Devstack, as per the instructions found here: https://docs.openstack.
org/devstack/latest/.

Finally, the chapter on network device management makes use of Cumulus
VX, version 3.7.3, in the example code—please see here for more
information: https://cumulusnetworks.com/products/cumulus-vx/.

https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html
https://docs.docker.com/install/
https://aws.amazon.com/
https://azure.microsoft.com
https://docs.openstack.org/devstack/latest/
https://cumulusnetworks.com/products/cumulus-vx/

Download the example code files
You can download the example code files for this book from your account at
www.packt.com. If you purchased this book elsewhere, you can visit www.packt.com/
support and register to have the files emailed directly to you.

You can download the code files by following these steps:

1. Log in or register at www.packt.com.
2. Select the SUPPORT tab.
3. Click on Code Downloads & Errata.
4. Enter the name of the book in the Search box and follow the onscreen

instructions.

Once the file is downloaded, please make sure that you unzip or extract the
folder using the latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/Pac
ktPublishing/Mastering-Ansible-Third-Edition. In case there's an update to the code,
it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos
available at https://github.com/PacktPublishing/. Check them out!

http://www.packt.com
http://www.packt.com/support
http://www.packt.com
https://github.com/PacktPublishing/Mastering-Ansible-Third-Edition
https://github.com/PacktPublishing/

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams
used in this book. You can download it here: https://www.packtpub.com/sites/defau
lt/files/downloads/9781789951547_ColorImages.pdf.

https://www.packtpub.com/sites/default/files/downloads/9781789951547_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789951547_ColorImages.pdf

Code in Action
Visit the following link to check out videos of the code being run:
http://bit.ly/2HCcfRE

http://bit.ly/2HCcfRE

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter
handles. Here is an example: "Also, note that Ansible requires
the winrm Python module installed to connect successfully."

A block of code is set as follows:

- name: Linux file example playbook

 hosts: all

 gather_facts: false

Any command-line input or output is written as follows:

sudo yum install python2-winrm

Bold: Indicates a new term, an important word, or words that you see
onscreen. For example, words in menus or dialog boxes appear in the text
like this. Here is an example: "Now, note the buttons along the top of the
Inventories pane
—DETAILS, PERMISSIONS, GROUPS, HOSTS, SOURCES, and COMPLETED
JOBS."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book,
mention the book title in the subject of your message and email us at
customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our
content, mistakes do happen. If you have found a mistake in this book, we
would be grateful if you would report this to us. Please visit www.packt.com/submi
t-errata, selecting your book, clicking on the Errata Submission Form link,
and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the
Internet, we would be grateful if you would provide us with the location
address or website name. Please contact us at copyright@packt.com with a link to
the material.

If you are interested in becoming an author: If there is a topic that you
have expertise in and you are interested in either writing or contributing to a
book, please visit authors.packtpub.com.

http://www.packt.com/submit-errata
http://authors.packtpub.com/

Reviews
Please leave a review. Once you have read and used this book, why not leave
a review on the site that you purchased it from? Potential readers can then see
and use your unbiased opinion to make purchase decisions, we at Packt can
understand what you think about our products, and our authors can see your
feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

http://www.packt.com/

Section 1: Ansible Overview and
Fundamentals
In this section, we will explore the fundamentals of how Ansible works and
establish a sound basis on which to develop playbooks and workflows.

The following chapters are included in this section:

Chapter 1, The System Architecture and Design of Ansible

Chapter 2, Protecting Your Secrets with Ansible

Chapter 3, Ansible and Windows – Not Just for Linux

Chapter 4, Infrastructure Management for Enterprises with AWX

The System Architecture and
Design of Ansible
This chapter provides a detailed exploration of the architecture and design
of Ansible, and how it goes about performing tasks on your behalf. We will
cover the basic concepts of inventory parsing and how data is discovered, and
then proceed onto playbook parsing. We will take a walk through module
preparation, transportation, and execution. Lastly, we will detail variable
types and find out where the variables are located, their scope of use, and
how precedence is determined when variables are defined in more than one
location. All these things will be covered in order to lay the foundation for
mastering Ansible!

In this chapter, we will cover the following topics:

Ansible version and configuration
Inventory parsing and data sources
Playbook parsing
Execution strategies
Module transport and execution
Variable types and locations
Magic variables
Variable precedence (and interchanging this with variable priority
ordering)

Technical requirements
Check out the following video to see the Code in Action:

http://bit.ly/2ulbmEl

http://bit.ly/2ulbmEl

Ansible version and configuration
It is assumed that you have Ansible installed on your system. There are many
documents out there that cover installing Ansible in a way that is appropriate
to the operating system and version that you might be using. This book will
assume use of Ansible version 2.7.x.x. To discover the version in use on a
system where Ansible is already installed, make use of the version argument,
that is, either ansible or ansible-playbook, as follows:

ansible-playbook --version

This command should give you an output that's similar to the following
screenshot:

Note that ansible is the executable for doing ad hoc one-task executions, and ansible-
playbook is the executable that will process playbooks for orchestrating many tasks.

The configuration for Ansible can exist in a few different locations, where the
first file found will be used. The search involves the following:

ANSIBLE_CFG: This environment variable is used, provided it is set
ansible.cfg: This is located in the current directory
~/.ansible.cfg: This is located in the user's home directory
/etc/ansible/ansible.cfg

Some installation methods may include placing a config file in one of these
locations. Look around to check whether such a file exists and see what
settings are in the file to get an idea of how Ansible operation may be
affected. This book will assume that there are no settings in the ansible.cfg file
that would affect the default operation of Ansible.

Inventory parsing and data sources
In Ansible, nothing happens without an inventory. Even ad hoc actions
performed on the localhost require an inventory, though that inventory may
just consist of the localhost. The inventory is the most basic building block of
Ansible architecture. When executing ansible or ansible-playbook, an inventory
must be referenced. Inventories are either files or directories that exist on the
same system that runs ansible or ansible-playbook. The location of the inventory
can be referenced at runtime with the --inventory-file (-i) argument, or by
defining the path in an Ansible config file.

Inventories can be static or dynamic, or even a combination of both, and
Ansible is not limited to a single inventory. The standard practice is to split
inventories across logical boundaries, such as staging and production,
allowing an engineer to run a set of plays against their staging environment
for validation, and then follow with the same exact plays run against the
production inventory set.

Variable data, such as specific details on how to connect to a particular host
in your inventory, can be included, along with an inventory in a variety of
ways, and we'll explore the options available to you.

Static inventory
The static inventory is the most basic of all the inventory options. Typically,
a static inventory will consist of a single file in the ini format. Here is an
example of a static inventory file describing a single host, mastery.example.name:

mastery.example.name

That is all there is to it. Simply list the names of the systems in your
inventory. Of course, this does not take full advantage of all that an inventory
has to offer. If every name were listed like this, all plays would have to
reference specific hostnames, or the special built-in all group (which, as it
suggests, contains all hosts in the inventory). This can be quite tedious when
developing a playbook that operates across different environments within
your infrastructure. At the very least, hosts should be arranged into groups.

A design pattern that works well is to arrange your systems into groups based
on expected functionality. At first, this may seem difficult if you have an
environment where single systems can play many different roles, but that is
perfectly fine. Systems in an inventory can exist in more than one group, and
groups can even consist of other groups! Additionally, when listing groups
and hosts, it's possible to list hosts without a group. These would have to be
listed first before any other group is defined. Let's build on our previous
example and expand our inventory with a few more hosts and groupings as
follows:

[web]

mastery.example.name

[dns]

backend.example.name

[database]

backend.example.name

[frontend:children]

web

[backend:children]

dns

database

What we have created here is a set of three groups with one system in each,
and then two more groups, which logically group all three together. Yes,
that's right; you can have groups of groups. The syntax used here is
[groupname:children], which indicates to Ansible's inventory parser that this
group, going by the name of groupname, is nothing more than a grouping of
other groups.

The children, in this case, are the names of the other groups. This inventory
now allows writing plays against specific hosts, low-level, role-specific
groups, or high-level logical groupings, or any combination thereof.

By utilizing generic group names, such as dns and database, Ansible plays can
reference these generic groups rather than the explicit hosts within. An
engineer can create one inventory file that fills in these groups with hosts
from a pre-production staging environment, and another inventory file with
the production versions of these groupings. The playbook content does not
need to change when executing on either a staging or production environment
because it refers to the generic group names that exist in both inventories.
Simply refer to the correct inventory to execute it in the desired environment.

Inventory ordering
A new play-level keyword, order, was added to Ansible in version 2.4. Prior
to this, Ansible processed the hosts in the order specified in the inventory file,
and continues to do so by default, even in newer versions. However, the
following values can be set for the order keyword for a given play, resulting
in the processing order of hosts described as follows:

inventory: This is the default option, and simply means Ansible proceeds
as it always has, processing the hosts in the order specified in the
inventory file
reverse_inventory: This results in the hosts being processed in the reverse
of the order specified in the inventory
sorted: The hosts are processed in alphabetically sorted order by name
reverse_sorted: The hosts are processed in reverse alphabetically sorted
order
shuffle: The hosts are processed in a random order, with the order being
randomized on each run

In Ansible, the alphabetical sorting used is otherwise known as lexicographical. In short
this means that values are sorted as strings, with the strings being processed from left to
right. Thus, say we have three hosts—mastery1, mastery11, and mastery2. In this list, mastery1
comes first as the character as position 8 is a 1. Then comes mastery11, as the character at
position 8 is still a 1, but now there is an additional character at position 9. Finally comes
mastery2, as character 8 is a 2 and 2 comes after 1. This is important as numerically we
know that 11 is greater than 2, but in this list mastery11 comes before mastery2.

Inventory variable data
Inventories provide more than just system names and groupings. Data
pertaining to the systems can be passed along as well. This data may include
the following:

Host-specific data to use in templates
Group-specific data to use in task arguments or conditionals
Behavioral parameters to tune how Ansible interacts with a system

Variables are a powerful construct within Ansible and can be used in a
variety of ways, not just those described here. Nearly every single thing done
in Ansible can include a variable reference. While Ansible can discover data
about a system during the setup phase, not all data can be discovered.
Defining data with the inventory expands this. Note that variable data can
come from many different sources, and one source may override another.
Variable precedence order is covered later in this chapter.

Let's improve upon our existing example inventory and add to it some
variable data. We will add some host-specific data, as well as group-specific
data:

[web]

mastery.example.name ansible_host=192.168.10.25

[dns]

backend.example.name

[database]

backend.example.name

[frontend:children]

web

[backend:children]

dns

database

[web:vars]

http_port=88

proxy_timeout=5

[backend:vars]

ansible_port=314

[all:vars]

ansible_ssh_user=otto

In this example, we defined ansible_host for mastery.example.name to be the IP
address of 192.168.10.25. The ansible_host variable is a behavioral inventory
variable, which is intended to alter the way Ansible behaves when operating
with this host. In this case, the variable instructs Ansible to connect to the
system using the IP address provided, rather than performing a DNS lookup
on the name using mastery.example.name. There are a number of other behavioral
inventory variables that are listed at the end of this section, along with their
intended use.

Our new inventory data also provides group-level variables for the web and
backend groups. The web group defines http_port, which may be used in an
NGINX configuration file, and proxy_timeout, which might be used to
determine HAProxy behavior. The backend group makes use of another
behavioral inventory parameter to instruct Ansible to connect to the hosts in
this group using port 314 for SSH, rather than the default of 22.

Finally, a construct is introduced that provides variable data across all the
hosts in the inventory by utilizing a built-in all group. Variables defined
within this group will apply to every host in the inventory. In this particular
example, we instruct Ansible to log in as the otto user when connecting to the
systems. This is also a behavioral change, as the Ansible default behavior is
to log in as a user with the same name as the user executing ansible or ansible-
playbook on the control host.

Here is a table of behavior inventory variables and the behaviors they intend
to modify:

Inventory parameters Behavior

ansible_host

This is the DNS name or or the Docker
container name which Ansible will initiate a
connection to.

Specifies the port number that Ansible will

ansible_port use to connect to the inventory host, if not the
default value of 22.

ansible_user

Specifies the username that Ansible will
connect to the inventory host with, regardless
of the connection type.

ansible_ssh_pass

Used to provide Ansible with the password
for authentication to the inventory host in
conjunction with ansible_user.

ansible_ssh_private_key_file

Used to specify which SSH private key file
will be used to connect to the inventory host,
if not using the default one or ssh-agent.

ansible_ssh_common_args
This defines SSH arguments to append to the
default arguments for ssh, sftp, and scp.

ansible_sftp_extra_args

Used to specify additional arguments that will
be passed to the sftp binary when called by
Ansible.

ansible_scp_extra_args

Used to specify additional arguments that will
be passed to the scp binary when called by
Ansible.

ansible_ssh_extra_args

Used to specify additional arguments that will
be passed to the ssh binary when called by
Ansible.

ansible_ssh_pipelining
This setting uses a Boolean to define whether
SSH pipelining should be used for this host.

ansible_ssh_executable
This setting overrides the path to the SSH
executable for this host.

ansible_become
This defines whether privilege escalation (sudo
or otherwise) should be used with this host.

ansible_become_method

This is the method to use for privilege
escalation, and can be one of sudo, su, pbrun,
pfexec, doas, dzdo, or ksu.

ansible_become_user
This is the user to become through privilege
escalation.

ansible_become_pass
This is the password to use for privilege
escalation.

ansible_sudo_pass

This is the sudo password to use (this is
insecure; we strongly recommend using --ask-
sudo-pass).

ansible_connection

This is the connection type of the host.
Candidates are local, smart, ssh, paramiko, docker,
or winrm (more on this later in the book). The
default is smart in any modern Ansible
distribution (this detects whether the SSH
feature ControlPersist is supported and, if so,
uses ssh as the connection type, falling back to
paramiko otherwise).

ansible_docker_extra_args

Used to specify the extra argument that will
be passed to a remote Docker daemon on a
given inventory host.

ansible_shell_type

Used to determine the shell type on the
inventory host(s) in question. Defaults to sh-
style syntax, but can be set to csh or fish to
work with systems that use these shells.

ansible_shell_executable

Used to determine the shell type on the
inventory host(s) in question. Defaults to sh-
style syntax, but can be set to csh or fish to
work with systems that use these shells.

ansible_python_interpreter

This is used to manually set the path to
Python on a given host in the inventory. For
example some distributions of Linux have
more than one Python version installed, and it
is important that the correct one is set. For
example, a host might have both

/usr/bin/python27 and /usr/bin/python3, and
this is used to define which one will be used.

ansible_*_interpreter

Used for any other interpreted language that
Ansible might depend upon (e.g. Perl or
Ruby). Replaces the interpreter binary with
the one specified.

Dynamic inventories
A static inventory is great, and enough for many situations. But there are
times when a statically written set of hosts is just too unwieldy to manage.
Consider situations where inventory data already exists in a different system,
such as LDAP, a cloud computing provider, or an in-house configuration
management database (CMDB) (inventory, asset tracking, and data
warehousing) system. It would be a waste of time and energy to duplicate
that data and, in the modern world of on-demand infrastructure, that data
would quickly grow stale or disastrously incorrect.

Another example of when a dynamic inventory source might be desired is
when your site grows beyond a single set of playbooks. Multiple playbook
repositories can fall into the trap of holding multiple copies of the same
inventory data, or complicated processes have to be created to reference a
single copy of the data. An external inventory can easily be leveraged to
access the common inventory data stored outside of the playbook repository
to simplify the setup. Thankfully, Ansible is not limited to static inventory
files.

A dynamic inventory source (or plugin) is an executable that Ansible will call
at runtime to discover real-time inventory data. This executable may reach
out into external data sources and return data, or it can just parse local data
that already exists but may not be in the Ansible inventory ini format. While
it is possible, and easy, to develop your own dynamic inventory source,
which we will cover in a later chapter, Ansible provides a number of example
inventory plugins, including, but not limited to, the following:

OpenStack Nova
Rackspace Public Cloud
DigitalOcean
Linode
Amazon EC2
Google Compute Engine

Microsoft Azure
Docker
Vagrant

Many of these plugins require some level of configuration, such as user
credentials for EC2 or authentication endpoint for OpenStack Nova. Since it
is not possible to configure additional arguments for Ansible to pass along to
the inventory script, the configuration for the script must either be managed
via an ini config file read from a known location, or environment variables
read from the shell environment used to execute ansible or ansible-
playbook. Note also that sometimes, external libraries are required for these
inventory scripts to function.

When ansible or ansible-playbook is directed at an executable file for an
inventory source, Ansible will execute that script with a single argument, --
list. This is so that Ansible can get a listing of the entire inventory in order to
build up its internal objects to represent the data. Once that data is built up,
Ansible will then execute the script with a different argument for every host
in the data to discover variable data. The argument used in this execution is --
host <hostname>, which will return any variable data specific to that host.

The inventory scripts are too numerous to go through each in detail in this
book. However, to demonstrate the process, we will work through the use of
the EC2 dynamic inventory. The dynamic inventory scripts officially
included with Ansible can be found on Github:

https://github.com/ansible/ansible/tree/devel/contrib/inventory

On browsing this directory system, we can see there is an ec2.py and
associated example configuration file, ec2.ini. Download these onto your
system and make the Python file executable:

https://github.com/ansible/ansible/tree/devel/contrib/inventory

If we take a look at the comments at the top of ec2.py, we can see it tells us
that we need the Boto library installed. Installing this will depend on your
operating system and Python environment, but on CentOS 7 (and other EL7
variants), it could be done with the following:

Now, take a look at the ec2.ini file, and edit it as appropriate. You can see that
your AWS credentials could go into this file, but it is not recommended for
security reasons. For this example, we will simply specify them using
environment variables, and then run our dynamic inventory script with the --
list parameter, as discussed in the previous screenshot. Doing so yields the
following:

Voila! We have a listing of our current AWS inventory, along with a glimpse
into the host variables for the discovered hosts. Note that, of course, the full
output is far more complete than this.

With the AWS inventory in place, you could use this right away to run a
single task or entire playbook against this dynamic inventory. For example, to
use the ping module to check Ansible connectivity to all hosts in the
inventory, you could run the following command:

ansible -i ec2.py all -m ping

This, of course, is just one example. However, if you follow this process for
other dynamic inventory providers, you should get them working with ease.

In Chapter 9, Extending Ansible, we will develop our own custom inventory
plugin to demonstrate how they operate.

Runtime inventory additions
Just like static inventory files, it is important to remember that Ansible will
parse this data once, and only once, per ansible or ansible-playbook execution.
This is a fairly common stumbling point for users of cloud dynamic sources,
where frequently, a playbook will create a new cloud resource and then
attempt to use it as if it were part of the inventory. This will fail, as the
resource was not part of the inventory when the playbook launched. All is not
lost though! A special module is provided that allows a playbook to
temporarily add an inventory to the in-memory inventory object, the add_host
module.

The add_host module takes two options, name and groups. The name should be
obvious; it defines the hostname that Ansible will use when connecting to
this particular system. The groups option is a comma-separated list of groups
to add this new system to. Any other option passed to this module will
become the host variable data for this host. For example, if we want to add a
new system, name it newmastery.example.name, add it to the web group, and instruct
Ansible to connect to it by way of IP address 192.168.10.30. This will create a
task resembling the following:

- name: add new node into runtime inventory

 add_host:

 name: newmastery.example.name

 groups: web

 ansible_host: 192.168.10.30

This new host will be available to use, by way of the name provided, or by
way of the web group, for the rest of the ansible-playbook execution. However,
once the execution has completed, this host will not be available unless it has
been added to the inventory source itself. Of course, if this were a new cloud
resource created, the next ansible or ansible-playbook execution that sourced
inventory from that cloud would pick up the new member.

Inventory limiting
As mentioned earlier, every execution of ansible or ansible-playbook will parse
the entire inventory it has been directed at. This is even true when a limit has
been applied. A limit is applied at runtime by making use of the --limit
runtime argument to ansible or ansible-playbook. This argument accepts a
pattern, which is basically a mask to apply to the inventory. The entire
inventory is parsed, and at each play, the limit mask supplied further limits
the host pattern listed for the play.

Let's take our previous inventory example and demonstrate the behavior of
Ansible with and without a limit. If you recall, we have the special group, all,
that we can use to reference all the hosts within an inventory. Let's assume
that our inventory is written out in the current working directory in a file
named mastery-hosts, and we will construct a playbook to demonstrate the host
on which Ansible is operating. Let's write this playbook out as mastery.yaml:

- name: limit example play

 hosts: all

 gather_facts: false

 tasks:

 - name: tell us which host we are on

 debug:

 var: inventory_hostname

The debug module is used to print out text, or values of variables. We'll use
this module a lot in this book to simulate actual work being done on a host.

Now, let's execute this simple playbook without supplying a limit. For
simplicity's sake, we will instruct Ansible to utilize a local connection
method, which will execute locally rather than attempting to SSH to these
non-existent hosts.

Let's take a look at the following screenshot:

As we can see, both hosts, backend.example.name and mastery.example.name, were
operated on. Let's see what happens if we supply a limit, specifically to limit
our run to frontend systems only:

We can see that only mastery.example.name was operated on this time. While
there are no visual clues that the entire inventory was parsed, if we dive into
the Ansible code and examine the inventory object, we will indeed find all
the hosts within, and see how the limit is applied every time the object is
queried for items.

It is important to remember that regardless of the host's pattern used in a play,
or the limit supplied at runtime, Ansible will still parse the entire inventory
set during each run. In fact, we can prove this by attempting to access the
host variable data for a system that would otherwise be masked by our limit.
Let's expand our playbook slightly and attempt to access the ansible_port
variable from backend.example.name:

- name: limit example play

 hosts: all

 gather_facts: false

 tasks:

 - name: tell us which host we are on

 debug:

 var: inventory_hostname

 - name: grab variable data from backend

 debug:

 var: hostvars['backend.example.name']['ansible_port']

We will still apply our limit, which will restrict our operations to just
mastery.example.name:

We have successfully accessed the host variable data (by way of group
variables) for a system that was otherwise limited out. This is a key skill to
understand, as it allows for more advanced scenarios, such as directing a task
at a host that is otherwise limited out. Delegation can be used to manipulate a
load balancer to put a system into maintenance mode while being upgraded
without having to include the load balancer system in your limit mask.

Playbook parsing
The whole purpose of an inventory source is to have systems to manipulate.
The manipulation comes from playbooks (or, in the case of Ansible ad hoc
execution, that is, simple single-task plays). You should already have a basic
understanding of playbook construction, so we won't spend a lot of time
covering that; however, we will delve into some specifics of how a playbook
is parsed. Specifically, we will cover the following:

Order of operations
Relative path assumptions
Play behavior keys
Host selection for plays and tasks
Play and task names

Order of operations
Ansible is designed to be as easy as possible for a human to understand. The
developers strive to strike the best balance of human comprehension and
machine efficiency. To that end, nearly everything in Ansible can be assumed
to be executed in a top-to-bottom order; that is, the operation listed at the top
of a file will be accomplished before the operation listed at the bottom of a
file. Having said that, there are a few caveats, and even a few ways to
influence the order of operations.

A playbook has only two main operations it can accomplish. It can either run
a play, or it can include another playbook from somewhere on the filesystem.
The order in which these are accomplished is simply the order in which they
appear in the playbook file, from top to bottom. It is important to note that
while the operations are executed in order, the entire playbook and any
included playbooks are completely parsed before any executions. This means
that any included playbook file has to exist at the time of the playbook
parsing. They cannot be generated in an earlier operation. This is specific to
playbook inclusions, and not necessarily to task inclusions that may appear
within a play, which will be covered in a later chapter.

Within a play, there are a few more operations. While a playbook is strictly
ordered from top to bottom, a play has a more nuanced order of operations.
Here is a list of the possible operations and the order in which they will
happen:

Variable loading
Fact gathering
The pre_tasks execution
Handlers notified from the pre_tasks execution
Roles execution
Tasks execution
Handlers notified from roles or tasks execution
The post_tasks execution

Handlers notified from the post_tasks execution

Here is an example play with most of these operations shown:

- hosts: localhost

 gather_facts: false

 vars:

 - a_var: derp

 pre_tasks:

 - name: pretask

 debug:

 msg: "a pre task"

 changed_when: true

 notify: say hi

 roles:

 - role: simple

 derp: newval

 tasks:

 - name: task

 debug:

 msg: "a task"

 changed_when: true

 notify: say hi

 post_tasks:

 - name: posttask

 debug:

 msg: "a post task"

 changed_when: true

 notify: say hi

Regardless of the order in which these blocks are listed in a play, the order
detailed in the previous code block is the order in which they will be
processed. Handlers (the tasks that can be triggered by other tasks that result
in a change) are a special case. There is a utility module, meta, which can be
used to trigger handler processing at a specific point:

- meta: flush_handlers

This will instruct Ansible to process any pending handlers at that point before
continuing on with the next task or next block of actions within a play.
Understanding the order and being able to influence the order with
flush_handlers is another key skill to have when there is a need for
orchestrating complicated actions, where things such as service restarts are

very sensitive to order. Consider the initial rollout of a service.

The play will have tasks that modify config files and indicate that the service
should be restarted when these files change. The play will also indicate that
the service should be running. The first time this play happens, the config file
will change and the service will change from not running to running. Then,
the handlers will trigger, which will cause the service to restart immediately.
This can be disruptive to any consumers of the service. It would be better to
flush the handlers before a final task to ensure the service is running. This
way, the restart will happen before the initial start, so the service will start up
once and stay up.

Relative path assumptions
When Ansible parses a playbook, there are certain assumptions that can be
made about the relative paths of items referenced by the statements in a
playbook. In most cases, paths for things such as variable files to include,
task files to include, playbook files to include, files to copy, templates to
render, and scripts to execute, are all relative to the directory where the file
referencing them resides. Let's explore this with an example playbook and
directory listing to show where the files are:

The directory structure is as follows:

.

├── a_vars_file.yaml

├── mastery-hosts

├── relative.yaml

└── tasks

 ├── a.yaml

 └── b.yaml

The content of a_vars_file.yaml is as follows:

something: "better than nothing"

The content of relative.yaml is as follows:

- name: relative path play

 hosts: localhost

 gather_facts: false

 vars_files:

 - a_vars_file.yaml

 tasks:

 - name: who am I

 debug:

 msg: "I am mastery task"

 - name: var from file

 debug:

 var: something

 - include: tasks/a.yaml

The content of tasks/a.yaml is as follows:

- name: where am I

 debug:

 msg: "I am task a"

- include: b.yaml

The content of tasks/b.yaml is as follows:

- name: who am I

 debug:

 msg: "I am task b"

Execution of the playbook is shown as follows:

We can clearly see the relative references to paths and how they are relative

to the file referencing them. When using roles, there are some additional
relative path assumptions; however, we'll cover that in detail in a later
chapter.

Play behavior directives
When Ansible parses a play, there are a few directives it looks for in order to
define various behaviors for a play. These directives are written at the same
level as the hosts: directive. Here is a description of the subset of the keys that
can be used:

any_errors_fatal: This Boolean directive is used to instruct Ansible to treat
any failure as a fatal error to prevent any further tasks from being
attempted. This changes the default, where Ansible will continue until
all the tasks are complete or all the hosts have failed.
connection: This string directive defines which connection system to use
for a given play. A common choice to make here is local, which
instructs Ansible to do all the operations locally, but with the context of
the system from the inventory.
gather_facts: This Boolean directive controls whether or not Ansible will
perform the fact-gathering phase of the operation, where a special task
will run on a host to uncover various facts about the system. Skipping
fact gathering, when you are sure that you do not need any of the
discovered data, can be a significant time-saver in a larger environment.
max_fail_percentage: This number directive is similar to any_errors_fatal, but
is more fine-grained. This allows you to define just what percentage of
your hosts can fail before the whole operation is halted.
no_log: This is a Boolean to control whether or not Ansible will log (to
the screen and/or a configured log file) the command given or the results
received from a task. This is important if your task or return deals with
secrets. This key can also be applied to a task directly.
port: This is a number directive to define what port SSH (or an other
remote connection plugin) should use to connect unless otherwise
configured in inventory data.
remote_user: This is a string directive that defines which user to log in
with on the remote system. The default is to connect as the same user
that ansible-playbook was started with.
serial: This directive takes a number and controls how many systems
Ansible will execute a task on before moving to the next task in a play.

This is a drastic change from the normal order of operation, where a task
is executed across every system in a play before moving to the next.
This is very useful in rolling update scenarios, which will be detailed in
later chapters.

become: This is a Boolean directive used to configure whether privilege
escalation (sudo or otherwise) should be used on the remote host to
execute tasks. This key can also be defined at a task level. Related
directives include become_user, become_method, and become_flags. These can be
used to configure how the escalation will occur.
strategy: This directive sets the execution strategy to be used for the play.

Many of these keys will be used in example playbooks through this book.

For a full list of available play directives, see the online documentation at https://docs.ansibl
e.com/ansible/latest/reference_appendices/playbooks_keywords.html#play.

https://docs.ansible.com/ansible/latest/reference_appendices/playbooks_keywords.html#play

Execution strategies
With the release of Ansible 2.0, a new way to control play execution behavior
was introduced: strategy. A strategy defines how Ansible coordinates each
task across the set of hosts. Each strategy is a plugin, and two come with
Ansible – linear and free. The linear strategy, which is the default strategy, is
how Ansible has always behaved. As a play is executed, all the hosts for a
given play execute the first task.

Once all are complete, Ansible moves to the next task. The serial directive
can create batches of hosts to operate in this way, but the base strategy
remains the same. All the targets for a given batch must complete a task
before the next task is executed. The free strategy breaks from this traditional
behavior. When using the free strategy, as soon as a host completes a task,
Ansible will execute the next task for that host, without waiting for any other
hosts to complete.

This will happen for every host in the set, for every task in the play. The
hosts will complete the tasks as fast as each are able to, minimizing the
execution time of each specific host. While most playbooks will use the
default linear strategy, there are situations where the free strategy would be
advantageous; for example, upgrading a service across a large set of hosts. If
the play has numerous tasks to perform the upgrade, which starts with
shutting down the service, then it would be more important for each host to
suffer as little downtime as possible.

Allowing each host to independently move through the play as fast as it is
able to will ensure that each host is down only for as long as necessary.
Without using free, the entire set will be down for as long as the slowest host
in the set takes to complete the tasks.

As the free strategy does not coordinate task completion across hosts, it is not possible to
depend on the data that is generated during a task on one host to be available for use in a
later task on a different host. There is no guarantee that the first host will have completed
the task that generates the data.

Execution strategies are implemented as a plugin and, as such, custom
strategies can be developed to extend Ansible behavior. Development of such
plugins is beyond the scope of this book.

Host selection for plays and tasks
The first thing that most plays define (after a name, of course) is a host
pattern for the play. This is the pattern used to select hosts out of the
inventory object to run the tasks on. Generally, this is straightforward; a host
pattern contains one or more blocks indicating a host, group, wildcard
pattern, or regex to use for the selection. Blocks are separated by a colon,
wildcards are just an asterisk, and regex patterns start with a tilde:

hostname:groupname:*.example:~(web|db)\.example\.com

Advanced usage can include group index selection or even ranges within a
group:

webservers[0]:webservers[2:4]

Each block is treated as an inclusion block; that is, all the hosts found in the
first pattern are added to all the hosts found in the next pattern, and so on.
However, this can be manipulated with control characters to change their
behavior. The use of an ampersand allows an inclusion selection (all the hosts
that exist in both patterns). The use of an exclamation point allows exclusion
selection (all the hosts that exist in the previous patterns but are NOT in the
exclusion pattern):

webservers:&dbservers # Hosts must exist in both webservers and dbservers groups

webservers:!dbservers # Hosts must exist in webservers but not dbservers groups

Once Ansible parses the patterns, it will then apply restrictions, if any.
Restrictions come in the form of limits or failed hosts. This result is stored for
the duration of the play, and it is accessible via the play_hosts variable. As
each task is executed, this data is consulted and an additional restriction may
be placed upon it to handle serial operations. As failures are encountered, be
it a failure to connect or a failure in executing tasks, the failed host is placed
in a restriction list so that the host will be bypassed in the next task.

If, at any time, a host selection routine gets restricted down to zero hosts, the

play execution will stop with an error. A caveat here is that if the play is
configured to have a max_fail_precentage or any_errors_fatal parameter, then the
playbook execution stops immediately after the task where this condition is
met.

Play and task names
While not strictly necessary, it is a good practice to label your plays and tasks
with names. These names will show up in the command-line output of
ansible-playbook and will show up in the log file if ansible-playbook is directed to
log to a file. Task names also come in handy to direct ansible-playbook to start
at a specific task and to reference handlers.

There are two main points to consider when naming plays and tasks:

Names of plays and tasks should be unique
Beware of what kind of variables can be used in play and task names

Naming plays and tasks uniquely is a best practice in general that will help to
quickly identify where a problematic task may reside in your hierarchy of
playbooks, roles, task files, handlers, and so on. Uniqueness is more
important when notifying a handler or when starting at a specific task. When
task names have duplicates, the behavior of Ansible may be non-
deterministic, or at least non-obvious.

With uniqueness as a goal, many playbook authors will look to variables to
satisfy this constraint. This strategy may work well, but authors need to take
care as to the source of the variable data they are referencing. Variable data
can come from a variety of locations (which we will cover later in this
chapter), and the values assigned to variables can be defined at a variety of
times. For the sake of play and task names, it is important to remember that
only variables for which the values can be determined at playbook parse time
will parse and render correctly. If the data of a referenced variable is
discovered via a task or other operation, the variable string will be displayed
as unparsed in the output. Let's look at an example playbook that utilizes
variables for play and task names:

- name: play with a {{ var_name }}

 hosts: localhost

 gather_facts: false

 vars:

 - var_name: not-mastery

 tasks:

 - name: set a variable

 set_fact:

 task_var_name: "defined variable"

 - name: task with a {{ task_var_name }}

 debug:

 msg: "I am mastery task"

- name: second play with a {{ task_var_name }}

 hosts: localhost

 gather_facts: false

 tasks:

 - name: task with a {{ runtime_var_name }}

 debug:

 msg: "I am another mastery task"

At first glance, you might expect at least var_name and task_var_name to render
correctly. We can clearly see task_var_name being defined before its use.
However, armed with our knowledge that playbooks are parsed in their
entirety before execution, we know better:

As we can see in the previous screenshot, the only variable name that is
properly rendered is var_name, as it was defined as a static play variable.

Module transport and execution
Once a playbook is parsed and the hosts are determined, Ansible is ready to
execute a task. Tasks are made up of a name (optional, but nonetheless
important, as described previously), a module reference, module arguments,
and task control directives. A later chapter will cover task control directives
in detail, so we will only concern ourselves with the module reference and
arguments.

Module reference
Every task has a module reference. This tells Ansible which bit of work to
carry out. Ansible is designed to easily allow for custom modules to live
alongside a playbook. These custom modules can be wholly new
functionality, or they can replace modules shipped with Ansible itself. When
Ansible parses a task and discovers the name of the module to use for a task,
it looks into a series of locations in order to find the module requested. Where
it looks also depends on where the task lives, whether in a role or not.

If a task is in a role, Ansible will first look for the module within a directory
tree named library within the role the task resides in. If the module is not
found there, Ansible looks for a directory named library at the same level as
the main playbook (the one referenced by the ansible-playbook execution). If
the module is not found there, Ansible will finally look in the configured
library path, which defaults to /usr/share/ansible/. This library path can be
configured in an Ansible config file, or by way of the ANSIBLE_LIBRARY
environment variable.

This design, allowing modules to be bundled with roles and playbooks,
allows for the addition of functionality or the reparation of problems quickly
and easily.

Module arguments
Arguments to a module are not always required; the help output of a module
will indicate which models are required and which are not. Module
documentation can be accessed with the ansible-doc command as follows:

This command was piped into cat to prevent shell paging from being used.

Arguments can be templated with Jinja2, which will be parsed at module
execution time, allowing for data discovered in a previous task to be used in
later tasks; this is a very powerful design element.

Arguments can be supplied in a key=value format, or in a complex format that
is more native to YAML. Here are two examples of arguments being passed
to a module showcasing the two formats:

- name: add a keypair to nova

 os_keypair: cloud={{ cloud_name }} name=admin-key wait=yes

- name: add a keypair to nova

 os_keypair:

 cloud: "{{ cloud_name }}"

 name: admin-key

 wait: yes

Both formats will lead to the same result in this example; however, the
complex format is required if you wish to pass complex arguments into a
module. Some modules expect a list object or a hash of data to be passed in;
the complex format allows for this. While both formats are acceptable for
many tasks, the complex format is the format used for the majority of
examples in this book.

Module blacklisting
Starting with Ansible 2.5, it is now possible for system administrators to
blacklist Ansible modules that they do not wish to be available to playbook
developers. This might be for security reasons, to maintain conformity, or
even to avoid the use of deprecated modules.

The location for the module blacklist is defined by the plugin_filters_cfg
parameter found in the defaults section of the Ansible configuration file. By
default, it is disabled, and the suggested default value is set to
/etc/ansible/plugin_filters.yml.

The format for this file is, at present, very simple—it contains a version
header to allow for the file format to be updated in future, and a list of
modules to be filtered out. For example, one of the currently deprecated
modules to be completely removed in Ansible 2.11 is sf_account_manager (see ht
tps://docs.ansible.com/ansible/latest/porting_guides/porting_guide_2.7.html#deprecatio

n-notices). Thus, to prevent anyone from using this internally, the
plugin_filters.yml file would look like this:

filter_version:'1.0'

module_blacklist:

 # Deprecated – to be removed in 2.11

 - sf_account_manager

Although useful in helping to ensure high-quality Ansible code is maintained,
this functionality is, at the time of writing, limited to modules, and cannot be
extended to anything else, such as roles.

https://docs.ansible.com/ansible/latest/porting_guides/porting_guide_2.7.html#deprecation-notices

Module transport and execution
Once a module is found, Ansible has to execute it in some way. How the
module is transported and executed depends on a few factors; however, the
common process is to locate the module file on the local filesystem and read
it into memory, and then add in the arguments passed to the module. Then,
the boilerplate module code from core Ansible is added to the file object in
memory. This collection is compressed, Base64-encoded, and then wrapped
in a script. What happens next really depends on the connection method and
runtime options (such as leaving the module code on the remote system for
review).

The default connection method is smart, which most often resolves to the ssh
connection method. With a default configuration, Ansible will open an SSH
connection to the remote host, create a temporary directory, and close the
connection. Ansible will then open another SSH connection in order to write
out the wrapped ZIP file from memory (the result of local module files, task
module arguments, and Ansible boilerplate code) into a file within the
temporary directory that we just created and close the connection.

Finally, Ansible will open a third connection in order to execute the script
and delete the temporary directory and all its contents. The module results are
captured from stdout in the JSON format, which Ansible will parse and handle
appropriately. If a task has an async control, Ansible will close the third
connection before the module is complete, and SSH back into the host to
check the status of the task after a prescribed period until the module is
complete or a prescribed timeout has been reached.

Task performance
The previous description of how Ansible connects to hosts results in three
connections to the host for every task. In a small environment with a small
number of tasks, this may not be a concern; however, as the task set grows
and the environment size grows, the time required to create and tear down
SSH connections increases. Thankfully, there are a couple of ways to
mitigate this.

The first is an SSH feature, ControlPersist, which provides a mechanism to
create persistent sockets when first connecting to a remote host that can be
reused in subsequent connections to bypass some of the handshaking required
when creating a connection. This can drastically reduce the amount of time
Ansible spends on opening new connections. Ansible automatically utilizes
this feature if the host platform where Ansible is run from supports it. To
check whether your platform supports this feature, check the SSH man page
for ControlPersist.

The second performance enhancement that can be utilized is an Ansible
feature called pipelining. Pipelining is available to SSH-based connection
methods and is configured in the Ansible configuration file within the
ssh_connection section:

[ssh_connection]

pipelining=true

This setting changes how modules are transported. Instead of opening an
SSH connection to create a directory, another to write out the composed
module, and a third to execute and clean up, Ansible will instead open an
SSH connection on the remote host. Then, over that live connection, Ansible
will pipe in the zipped composed module code and script for execution. This
reduces the connections from three to one, which can really add up. By
default, pipelining is disabled.

Utilizing the combination of these two performance tweaks can keep your

playbooks nice and fast even as you scale your environment. However, keep
in mind that Ansible will only address as many hosts at once as the number of
forks Ansible is configured to run. Forks are the number of processes Ansible
will split off as a worker to communicate with remote hosts. The default is
five forks, which will address up to five hosts at once. Raise this number to
address more hosts as your environment size grows by adjusting the forks=
parameter in an Ansible configuration file, or by using the --forks (-f)
argument with ansible or ansible-playbook.

Variable types and location
Variables are a key component of the Ansible design. Variables allow for
dynamic play content and reusable plays across different sets of an inventory.
Anything beyond the most basic of Ansible use will utilize variables.
Understanding the different variable types and where they can be located, as
well as learning how to access external data or prompt users to populate
variable data, is one of the keys to mastering Ansible.

Variable types
Before diving into the precedence of variables, we must first understand the
various types and subtypes of variables available to Ansible, their location,
and where they are valid for use.

The first major variable type is inventory variables. These are the variables
that Ansible gets by way of the inventory. These can be defined as variables
that are specific to host_vars, to individual hosts, or applicable to entire groups
as group_vars. These variables can be written directly into the inventory file,
delivered by the dynamic inventory plugin, or loaded from the host_vars/<host>
or group_vars/<group> directories.

These types of variables might be used to define Ansible behavior when
dealing with these hosts or site-specific data related to the applications that
these hosts run. Whether a variable comes from host_vars or group_vars, it will
be assigned to a host's hostvars, and it can be accessed from the playbooks and
template files. Accessing a host's own variables can be done just by
referencing the name, such as {{ foobar }}, and accessing another host's
variables can be accomplished by accessing hostvars; for example, to access
the foobar variable for examplehost: {{ hostvars['examplehost']['foobar'] }}. These
variables have global scope.

The second major variable type is role variables. These are variables specific
to a role and are utilized by the role tasks – however, it should be noted that
once a role has been added to a playbook, its variables are generally
accessible throughout the rest of the playbook, including from within other
roles. In most simple playbooks, this won't matter, as the roles are typically
run one at a time, but it is worth remembering this as playbook structure gets
more complex—otherwise, unexpected behavior may result from variables
being set within a different role!

These variables are often supplied as a role default, which are meant to
provide a default value for the variable but can easily be overridden when

applying the role. When roles are referenced, it is possible to supply variable
data at the same time, either by overriding role defaults or creating wholly
new data. We'll cover roles in depth in a later chapter. These variables apply
to all hosts on which the role is executed and can be accessed directly, much
like a host's own hostvars.

The third major variable type is play variables. These variables are defined
in the control keys of a play, either directly by the vars key or sourced from
external files via the vars_files key. Additionally, the play can interactively
prompt the user for variable data using vars_prompt. These variables are to be
used within the scope of the play and in any tasks or included tasks of the
play. The variables apply to all hosts within the play and can be referenced as
if they are hostvars.

The fourth variable type is task variables. Task variables are made from data
discovered while executing tasks or in the fact-gathering phase of a play.
These variables are host-specific and are added to the host's hostvars and can
be used as such, which also means they have global scope after the point in
which they were discovered or defined. Variables of this type can be
discovered via gather_facts and fact modules (modules that do not alter state
but rather return data), populated from task return data via the register task
key or defined directly by a task making use of the set_fact or add_host
modules. Data can also be interactively obtained from the operator using the
prompt argument to the pause module and registering the result:

- name: get the operators name

 pause:

 prompt: "Please enter your name"

 register: opname

The extra variables, or extra-vars type, are variables supplied on the
command line when executing ansible-playbook via --extra-vars. Variable data
can be supplied as a list of key=value pairs, a quoted piece of JSON data, or a
reference to a YAML-formatted file with variable data defined within:

--extra-vars "foo=bar owner=fred"

--extra-vars '{"services":["nova-api","nova-conductor"]}'

--extra-vars @/path/to/data.yaml

Extra variables are considered global variables. They apply to every host and
have scope throughout the entire playbook.

Magic variables
In addition to the previously listed variable types, Ansible offers a set of
variables that deserve their own special mention – magic variables. These
are variables that are always set when a playbook is run without them having
to be explicitly created. Their names are always reserved and should not be
used for other variables.

Magic variables are used to provide information about the current playbook
run to the playbooks themselves and are extremely useful as Ansible
environments become larger and more complex. For example, if one of your
plays needs information about which groups the current host is in, the
group_names magic variable returns a list of these. Similarly, if you need to
configure the hostname for a service using Ansible, the inventory_hostname
magic variable will return the current hostname as it is defined in the
inventory. A simple example of this would be as follows:

- name: demonstrate magic variables

 hosts: all

 gather_facts: false

 tasks:

 - name: tell us which host we are on

 debug:

 var: inventory_hostname

 - name: tell us which groups we are in

 debug:

 var: group_names

Whilst it is beyond the scope of this book to go into detail on each and every
single magic variable, it is important to know of their existence. Imagine, for
example, setting up the hostnames on a new set of Linux servers from a blank
template. The inventory_hostname magic variable provides us with the hostname
we need directly from the inventory, without the need for another source of
data (or, for example, a connection to the CMDB). Similarly, accessing
groups_names allows us to define which plays should be run on a given host
within a single playbook – perhaps, for example, installing NGINX if the

host is in the webservers group. In this way, Ansible code can be made more
versatile and efficient, and hence, these variables deserve a special mention.

A full list of magic variables is available here: https://docs.ansible.com/ansible/latest/reference_app
endices/special_variables.html.

https://docs.ansible.com/ansible/latest/reference_appendices/special_variables.html

Accessing external data
Data for role variables, play variables, and task variables can also come from
external sources. Ansible provides a mechanism to access and evaluate data
from the control machine (the machine running ansible-playbook). The
mechanism is called a lookup plugin, and a number of them come with
Ansible. These plugins can be used to look up or access data by reading files,
generate and locally store passwords on the Ansible host for later reuse,
evaluate environment variables, pipe data in from executables, access data in
the Redis or etcd systems, render data from template files, query dnstxt records,
and more. The syntax is as follows:

lookup('<plugin_name>', 'plugin_argument')

For example, to use the mastery value from etcd in a debug task, execute the
following command:

- name: show data from etcd

 debug:

 msg: "{{ lookup('etcd', 'mastery') }}"

Lookups are evaluated when the task referencing them is executed, which
allows for dynamic data discovery. To reuse a particular lookup in multiple
tasks and reevaluate it each time, a playbook variable can be defined with a
lookup value. Each time the playbook variable is referenced, the lookup will
be executed, potentially providing different values over time.

Variable precedence
As you learned in the previous section, there are several major types of
variables that can be defined in a myriad of locations. This leads to a very
important question: what happens when the same variable name is used in
multiple locations? Ansible has a precedence for loading variable data, and
thus it has an order and a definition to decide which variable will win.
Variable value overriding is an advanced usage of Ansible, so it is important
to fully understand the semantics before attempting such a scenario.

Precedence order
Ansible defines the precedence order as follows, with those closest to the top
of the list winning. Note that this can change from release to release, and has
changed quite significantly since Ansible 2.4 was released, so it is worth
reviewing, especially when upgrading your Ansible environment:

1. Extra vars (from the command line) always wins
2. include parameters
3. Role (and include_role) parameters
4. Variables defined with set_facts, and those created with the register task

directive
5. include_vars

6. Task vars (only for the specific task)
7. Block vars (only for the tasks within the block)
8. Role vars (defined in main.yml in the vars subdirectory of the role).
9. Play vars_files

10. Play vars_prompt
11. Play vars
12. Host facts (and also cached set_facts)
13. host_vars playbook
14. host_vars inventory
15. Inventory file (or script) defined host vars
16. group_vars playbook
17. group_vars inventory
18. group_vars/all playbook
19. group_vars/all inventory
20. Inventory file (or script) defined group vars
21. Role defaults
22. Command-line values (for example, -u REMOTE_USER)

Ansible releases a porting guide with each release that details the changes you will need
to make to your code in order for it to continue functioning as expected. It is important to
review these as you upgrade your Ansible environment – the guides may be found here: ht
tps://docs.ansible.com/ansible/latest/porting_guides/porting_guides.html.

https://docs.ansible.com/ansible/latest/porting_guides/porting_guides.html

Variable group priority ordering
The previous list of priority ordering is obviously helpful when writing
Ansible playbooks, and, in most cases, it is apparent that variables should not
clash. For example, a task var clearly wins over a play var, and all tasks and
indeed plays are unique. Similarly, all hosts in the inventory will be unique,
so again, there should be no clash of variables with the inventory either.

There is, however, one exception to this – inventory groups. A one-to-many
relationship exists between hosts and groups, and, as such, any given host can
be a member of one or more groups. Let's suppose that the following code is
our inventory file by way of example:

[frontend]

host1.example.com

host2.example.com

[web:children]

frontend

[web:vars]

http_port=80

secure=true

[proxy]

host1.example.com

[proxy:vars]

http_port=8080

thread_count=10

Here, we have two hypothetical frontend servers, host1.example.com and
host2.example.com, in the frontend group. Both hosts are children of the web group,
which means they are assigned the inventory group_vars http_port=80.
host1.example.com is also a member of the proxy group, which has an identically
named variable but with a different assignment: http_port=8080.

Both of these variable assignments are at the inventory group_vars level, and so
the order of precedence does not define a winner. So what happens in this
case?

The answer is, in fact, predictable and deterministic. The group_vars
assignments are done in alphabetical order of the group names (Refer to the
tip box mentioned in the section Inventory ordering), with the last loaded
group overriding all preceding variable values that coincide.

This means any competing variables from mastery2 will win over the other two
groups. Those from the mastery11 then take precedence of those from the
mastery1 group, so please be mindful of this when creating group names!

In our example, when the groups are processed in alphabetical order, web
comes after proxy, and so the group_vars assignments from web that coincide with
those from any previously processed groups will win. Let's run the previous
inventory file through this example playbook to take a look at the behavior:

- name: group variable priority ordering example play

 hosts: all

 gather_facts: false

 tasks:

 - name: show assigned group variables

 vars:

 msg: |

 http_port:{{ hostvars[inventory_hostname]['http_port'] }}

 thread_count:{{ hostvars[inventory_hostname]['thread_count'] | default("undefined") }}

 secure:{{ hostvars[inventory_hostname]['secure'] }}

 debug:

 msg: "{{ msg.split('\n') }}"

When run, we get the following output:

As expected, the value assigned to the http_port variable for both hosts in the
inventory is 80. However, what if this behavior is not desired? Suppose we
want the value of http_port from the proxy group to take priority. It would be
painful to have to rename the group and all associated references to it to
change the alphanumerical sorting of the groups (though this would work!).
The good news is that Ansible 2.4 introduced the ansible_group_priority group
variable, which can be used for just this eventuality. If not explicitly set, this
variable defaults to 1, leaving the rest of the inventory file unchanged.

Let's set this as follows:

[proxy:vars]

http_port=8080

thread_count=10

ansible_group_priority=10

Now, when we run the same playbook, note how the value assigned to
http_proxy has changed, whilst all variable names that were not coincidental
behave exactly as before:

As your inventory grows with your infrastructure, be sure to make use of this
feature to gracefully handle any variable assignment collisions between your
groups.

Merging hashes
In the previous section, we focused on the precedence in which variables will
override each other. The default behavior of Ansible is that any overriding
definition for a variable name will completely mask the previous definition of
that variable. However, that behavior can be altered for one type of variable;
the hash. A hash variable (a dictionary, in Python terms) is a dataset of keys
and values. Values can be of different types for each key, and can even be
hashes themselves for complex data structures.

In some advanced scenarios, it is preferable to replace just one bit of a hash
or add to an existing hash rather than replacing the hash altogether. To unlock
this ability, a configuration change is necessary in the Ansible config file. The
configuration entry is hash_behavior, which either takes the value replace or
merge. A setting of merge will instruct Ansible to merge or blend the values of
two hashes when presented with an override scenario, rather than assume the
default of replace, which will completely replace the old variable data with the
new data.

Let's walk through an example of the two behaviors. We will start with a hash
loaded with data and simulate a scenario where a different value for the hash
is provided as a higher-priority variable.

This is the starting data:

hash_var:

 fred:

 home: Seattle

 transport: Bicycle

This is the new data loaded via include_vars:

hash_var:

 fred:

 transport: Bus

With the default behavior, the new value for hash_var will be as follows:

hash_var:

 fred:

 transport: Bus

However, if we enable the merge behavior, we will get the following result:

hash_var:

 fred:

 home: Seattle

 transport: Bus

There are even more nuances and undefined behaviors when using merge
and, as such, it is strongly recommended to only use this setting if absolutely
necessary.

Summary
While the design of Ansible focuses on simplicity and ease of use, the
architecture itself is very powerful. In this chapter, we covered key design
and architecture concepts of Ansible, such as version and configuration,
playbook parsing, module transport and execution, variable types and
locations, and variable precedence.

You learned that playbooks contain variables and tasks. Tasks link bits of
code called modules with arguments, which can be populated by variable
data. These combinations are transported to selected hosts from inventory
sources provided. The fundamental understanding of these building blocks is
the platform on which you can build a mastery of all things Ansible!

In the next chapter, you will learn how to secure secret data while working
with Ansible.

Protecting Your Secrets with
Ansible
Secrets are meant to stay secret. Whether they are login credentials to a cloud
service or passwords to database resources, they are secret for a reason.
Should they fall into the wrong hands, they can be used to discover trade
secrets, customers' private data, create infrastructure for nefarious purposes,
or worse. All of which could cost you or your organization a lot of time,
money, and headaches! When the second edition of this book was published,
it was only possible to encrypt your sensitive data in external Vault files, and
all data had to exist entirely in either an encrypted or unencrypted form. It
was also only possible to use one single Vault password per playbook run,
meaning it was not possible to segregate your secret data and use different
passwords for items of different sensitivities. All that has now changed, with
multiple Vault passwords permissible at playbook runtime, as well as the
possibility of embedding encrypted strings in otherwise plain YAML files.

In this chapter, we will describe how to take advantage of these new features,
and thus keep your secrets safe with Ansible, by covering the following
topics:

Encrypting data at rest
Mixing encrypted data with plain YAML
Protecting secrets while operating

Technical requirements
Check out the following video to see the Code in Action:

http://bit.ly/2HIteAS

http://bit.ly/2HIteAS

Encrypting data at rest
As a configuration management system or an orchestration engine, Ansible
has great power. To wield that power, it is necessary to entrust secret data to
Ansible. An automation system that prompts the operator for passwords at
each connection is not very efficient. To maximize the power of Ansible,
secret data has to be written to a file that Ansible can read and from which it
can utilize the data.

This creates a risk, though! Your secrets are sitting there on your filesystem
in plain text. This is a physical and digital risk. Physically, the computer
could be taken from you and pored over for secret data. Digitally, any
malicious software that can break the boundaries set upon it is capable of
reading any data to which your user account has access. If you utilize a
source control system, the infrastructure that houses the repository is just as
much at risk.

Thankfully, Ansible provides a facility to protect your data at rest. That
facility is Vault. This facility allows for encrypting text files so that they are
stored at rest in an encrypted format. Without the key or a significant amount
of computing power, the data is indecipherable.

The key lessons to learn when dealing with encrypting data at rest include the
following:

Valid encryption targets
Securing differing data with multiple passwords and Vault IDs
Creating new encrypted files
Encrypting existing unencrypted files
Editing encrypted files
Changing the encryption password on files
Decrypting encrypted files
Encrypting data inline in an otherwise unencrypted YAML file (for
example, a playbook)

Running ansible-playbook referencing encrypted files

Vault IDs and passwords
Before the release of Ansible 2.4, it was only possible to use one Vault
password at a time. Whilst you could have multiple secrets for multiple
purposes stored in a number of locations, only one password could be used.
This was obviously fine for smaller environments, but as the adoption of
Ansible has grown, so has the requirement for better and more flexible
security options. For example, we have already discussed the potential for
Ansible to manage both a development and production environment through
the use of groups in the inventory. It is realistic to expect that these
environments would have different security credentials. Similarly, you would
expect core network devices to have different credentials to servers. In fact, it
is good security practice to do so.

Given this, it seems unreasonable to then protect any secrets under a single
master password using Vault. Ansible 2.4 introduced the concept of Vault
IDs as a solution, and whilst at present, the old single password commands
are all still valid, it is recommended to use Vault IDs when working with
Ansible on the command line. Each Vault ID must have one single password
associated with it, but multiple secrets can share the same ID.

Ansible Vault passwords can come from one of the following three sources:

A user-entered string, which Ansible will prompt for when it is required
A flat text file containing the Vault password in plain unencrypted text
(obviously, it is vital this file is kept secure!)
An executable that fetches the password (for example, from a credential
management system) and outputs it on a single line for Ansible to read

The syntax for each of these three options is broadly similar. If you only have
one Vault credential and hence aren't using IDs, you would therefore enter
the following line to run a playbook and prompt for the Vault password:

ansible-playbook --vault-id @prompt playbook.yaml

If you want to obtain the Vault password from a text file, you would run the
following command:

ansible-playbook --vault-id /path-to/vault-password-text-file playbook.yaml

Finally, if you are using an executable script, you would run the following
command:

ansible-playbook --vault-id /path-to/vault-password-script.py playbook.yaml

If you are working with IDs, simply add the ID in front of the password
source, followed by the @ character—if your ID for your Vault is prod, for
example, the three preceding examples become the following:

ansible-playbook --vault-id prod@prompt playbook.yaml

ansible-playbook --vault-id prod@/path-to/vault-password-text-file playbook.yaml

ansible-playbook --vault-id prod@/path-to/vault-password-script.py playbook.yaml

Multiple combinations of these can be combined into one command, as
follows:

ansible-playbook --vault-id prod@prompt testing@/path-to/vault-password-text-file playbook.yaml

We will use the vault-id command line options throughout the rest of this
chapter.

Things Vault can encrypt
The Vault feature can be used to encrypt any structured data used by
Ansible. This can either be almost any YAML (or JSON) file that Ansible
uses during its operation, or even a single variable within an otherwise
unencrypted YAML file, such as a playbook or role. Examples of encrypted
files that Ansible can work with include:

group_vars/ files
host_vars/ files
include_vars targets
vars_files targets
--extra-vars targets
Role variables
Role defaults
Task files
Handler files
Source files for the copy module

If a file can be expressed in YAML and read by Ansible, or if a file is to be
transported with the copy module, it is a valid file for encryption in Vault.
Because the entire file will be unreadable at rest, care should be taken to not
be overzealous in picking which files to encrypt. Any source control
operations with the files will be done with the encrypted content, making it
very difficult to peer-review.

As a best practice, the smallest possible amount of data should be encrypted,
which may even mean moving some variables into a file all by themselves. It
is for this reason that Ansible 2.3 added the encrypt_string feature to ansible-
vault, allowing for individual secrets to be placed inline with otherwise
unencrypted YAML, saving the user from encrypting the entire file. We will
cover this later in the chapter.

Creating new encrypted files
To create new files, Ansible provides a new program, ansible-vault. This
program is used to create and interact with Vault-encrypted files. The
subcommand to create encrypted files is create, as shown in the following
screenshot:

To create a new file, you'll need to know two things ahead of time. The first
is the password ansible-vault will be using to encrypt the file, and the second is
the filename itself. Once provided with this information, ansible-vault will
launch a text editor (as defined in the EDITOR environment variable). Once you
save the file and exit the editor, ansible-vault will use the supplied password as
a key to encrypt the file with the AES256 cipher.

Let's walk through a few examples of creating encrypted files. First, we'll
create one and be prompted for a password, then we will provide a password
file, and lastly, we'll create an executable to deliver the password.

Password prompt
Getting ansible-vault to request a password from the user at runtime is the
easiest way to get started with Vault creation, so let's go through a simple
example and create a Vault containing a variable we want to encrypt. Take a
look at the following screenshot:

Once the passphrase is entered, our editor opens and we're able to put content
into the file, as shown in the following screenshot:

On my system, the configured editor is Vim. Your system may be different, and you may
need to set your preferred editor as the value for the EDITOR environment variable.

Now, we save the file. If we try to read the contents, we'll see that they are in
fact encrypted, with a small header hint for Ansible to use later, as shown in
the following screenshot:

As you can see from the headers, AES256 is used for Vault encryption at
present, meaning that as long as you use a good password when creating your
Vault, your data is very secure.

Password file
To use ansible-vault with a password file, you first need to create such a file.
Simply echoing a password into a file can do this. Once complete, you can
now reference this file when calling ansible-vault to create another encrypted
file, as shown in the following screenshot:

Just as when being prompted for a password, the editor will open and data
can be written.

Password script
This last example uses a password script. This is useful for designing a
system where a password can be stored in a central system for storing
credentials and shared with contributors to the playbook tree. Each
contributor could have his or her own password to the shared credentials
store, where the Vault password would be retrieved from. Our example will
be far more straightforward: just a simple output to STDOUT with a
password. This file will be saved as password.sh. The file needs to be marked as
an executable for Ansible to treat it as such, as shown in the following
screenshot:

Try this for yourself and see how it works—you should find that ansible-vault
creates a Vault with the password a long password, as written to STDOUT by the
script. You could even try editing using the following command:

ansible-vault edit --vault-id @prompt even_more_secrets.yaml

You should now see enter a long password when prompted—and you can now
edit the Vault successfully!

Encrypting existing files
The previous examples all dealt with creating new encrypted files using the
create subcommand. But what if we want to take an established file and
encrypt it? A subcommand exists for this as well. It is named encrypt, as
shown in the following screenshot:

As with create, encrypt expects a password (or password file or executable) and the
path to a file. Once the appropriate password is received, an editor opens up,
this time with our original content in plain text already visible to us.

Note that the file to be encrypted must already exist.

Let's demonstrate this by encrypting an existing file we have from Chapter 1,
The System Architecture and Design of Ansible, called a_vars_file.yaml, as
shown in the following screenshot:

In this example, we can see the file contents before and after the call to
encrypt, where after the contents are indeed encrypted. Unlike the
create subcommand, encrypt can operate on multiple files, making it easy to
protect all the important data in one action. Simply list all the files to be
encrypted, separated by spaces.

Attempting to encrypt already-encrypted files will result in an error.

Editing encrypted files
Once a file has been encrypted with ansible-vault, it cannot be directly edited.
Opening the file in an editor would result in the encrypted data being shown.
Making any changes to the file would damage the file and Ansible would be
unable to read the contents correctly. We need a subcommand that will first
decrypt the contents of a file, allow us to edit those contents, and then encrypt
the new contents before saving it back to the file. Such a subcommand exists
in edit, as shown in the following screenshot:

As we've already seen, our editor opens up with our content in plain text
visible to us. All of our familiar vault-id options are back, as before, as well as
the file to edit. As such, we can now edit the file we just encrypted using the
following command:

Notice that ansible-vault opens our editor with a temporary file as the file path.
The editor will save this, and then ansible-vault will encrypt it and move it to
replace the original file, as shown in the following screenshot:

The temporary file you can see in the editor window (/tmp/tmpVvcJBK.yaml) will
be removed once the file is successfully encrypted by ansible-vault.

Password rotation on encrypted
files
Over time, as contributors come and go, it is a good idea to rotate the
password used to encrypt your secrets. Encryption is only as good as the
protection of the password. ansible-vault provides a subcommand that allows
us to change the password named rekey, as shown in the following screenshot:

The rekey subcommand operates much like the edit subcommand. It takes in
an optional password, file, or executable, and one or more files to rekey. You

then need to use the --new-vault-id to define the new password (and ID if
required), which again can be through a prompt, file, or executable. Let's rekey
our even_more_secrets.yaml file in the following example, and add the dev ID to it:

Remember that all the encrypted files with the same ID need to have a
matching key. Be sure to rekey all the files with the same ID at the same time.

Decrypting encrypted files
If at some point, the need to encrypt data files goes away, ansible-vault
provides a subcommand that can be used to remove encryption for one or
more encrypted files. This subcommand is (surprisingly) named decrypt, as
shown in the following screenshot:

Once again, we have our familiar --vault-id options and then one or more file
paths to decrypt. Let's decrypt the file we created earlier using our password
file, as shown in the following screenshot:

In the next section, we will see how to execute Ansible-playbook with
encrypted files.

Executing Ansible-playbook with
encrypted files
To make use of our encrypted content, we need to be able to inform ansible-
playbook how to access any encrypted data it might encounter. Unlike ansible-
vault, which exists solely to deal with file encryption or decryption, ansible-
playbook is more general-purpose, and it will not assume it is dealing with
encrypted data by default. Luckily, all of our familiar --vault-id parameters
from the previous examples work just the same in ansible-playbook as they do
in ansible-vault. Ansible will hold the provided passwords and IDs in memory
for the duration of the playbook execution.

Let's now create a simple playbook named show_me.yaml that will print out the
value of the variable inside of a_vars_file.yaml, which we encrypted in a
previous example, as follows:

- name: show me an encrypted var

 hosts: localhost

 gather_facts: false

 vars_files:

 - a_vars_file.yaml

 tasks:

 - name: print the variable

 debug:

 var: something

Now, let's run the playbook and see what happens. Note how we use the --
vault-id parameter in exactly the same way as we did with ansible-vault;
continuity is maintained between the two binaries, so you are able to apply
everything you learned earlier in the chapter about using --vault-id. Take a
look at the following screenshot:

As you can see, the playbook runs successfully and prints out the
unencrypted value of the variable, even though the source variable file we
included was an Ansible Vault. Naturally, you wouldn't print a secret value to
the Terminal in a real playbook run, but this demonstrates how easy it is to
access data from a Vault.

Mixing encrypted data with plain
YAML
Before the release of Ansible 2.3, secure data had to be encrypted in a
separate file. For the reasons we discussed earlier, it is desirable to encrypt as
little data as possible. This is now possible (and also saves the need for too
many individual files as part of a playbook) through the use of the
encrypt_string subcommand of ansible-vault, which produces an encrypted
string that can be placed into an Ansible YAML file. Let's start with the
following basic playbook as an example:

- name: inline secret variable demonstration

 hosts: localhost

 gather_facts: false

 vars:

 my_secret: secure_password

 tasks:

 - name: print the secure variable

 debug:

 var: my_secret

When we run the preceding code, it should work as shown in the following
screenshot:

Now, obviously, it is not clever to leave a secure password in plain text like
this. So, rather than leave it like this, we will encrypt it using the encrypt_string
subcommand of ansible-vault, as follows:

So, if we wanted to create an encrypted block of text for our variable called
my_secret with the encrypted string secure_password, using the test Vault ID and
the password.sh script we created earlier for the password, we would run the
following:

We can now copy and paste that output into our playbook, ensuring our
variable is no longer human-readable, as shown in the following screenshot:

However, when we run the preceding while specifying the appropriate --
vault-id, the information can be accessed just as any other Vault data can, as
shown in the following screenshot:

Note that the playbook runs exactly as it did the first time we tested it, when
all the data was open for the world to see. Now, however, we have
successfully mixed our encrypted data with an otherwise unencrypted YAML
playbook. Next, we will delve deeper into some of the operational aspects of
running playbooks in conjunction with Ansible Vault.

Protecting secrets while operating
In the previous section of this chapter, we covered how to protect your
secrets at rest on the filesystem. However, that is not the only concern when
operating Ansible with secrets. That secret data is going to be used in tasks as
module arguments, loop inputs, or any number of other things. This may
cause the data to be transmitted to remote hosts, logged to local or remote log
files, or even displayed onscreen. This section of the chapter will discuss
strategies for protecting your secrets during operation.

Secrets transmitted to remote hosts
As we learned in Chapter 1, The System Architecture and Design of
Ansible, Ansible will combine module code and arguments and write this out
to a temporary directory on the remote host. This means your secret data is
transferred over the wire and written to the remote filesystem. Unless you are
using a connection plugin other than SSH or SSL-encrypted winrm, the data
over the wire is already encrypted, preventing your secrets from being
discovered by simple snooping. If you are using a connection plugin other
than SSH, be aware of whether or not data is encrypted while in transit.
Using any connection method that is not encrypted is strongly discouraged.

Once the data is transmitted, Ansible may write this data out in clear form to
the filesystem. This can happen if pipelining (which we learned about in Chapte
r 1, The System Architecture and Design of Ansible) is not in use, or if
Ansible has been instructed to leave remote files in place via the
ANSIBLE_KEEP_REMOTE_FILES environment variable. Without pipelining, Ansible
will write out the module code, plus arguments, into a temporary directory
that is to be deleted upon execution. Should there be a loss of connectivity
between writing out the file and executing it, the file will be left on the
remote filesystem until manually removed. If Ansible is explicitly instructed
to keep remote files in place, then, even if pipelining is enabled, Ansible will
write out and leave a remote file in place. Care should be taken with these
options when dealing with highly sensitive secrets, even though typically,
only the user Ansible logs in as on the remote host (or becomes via privilege
escalation) should have access to the leftover file. Simply deleting anything
in the ~/.ansible/tmp/ path for the remote user will suffice to clean secrets.

Secrets logged to remote or local
files
When Ansible operates on a host, it will attempt to log the action to syslog (if
verbosity level three or more is used). If this action is being done by a user
with appropriate rights, it will cause a message to appear in the syslog file of
the host. This message includes the module name and the arguments passed
along to that command, which could include your secrets. To prevent this
from happening, a play and task key exists, named no_log. Setting no_log to true
will prevent Ansible from logging the action to syslog.

Ansible can also be instructed to log its actions locally. This is controlled
either through log_path in the Ansible config file, or through an environment
variable called ANSIBLE_LOG_PATH. By default, logging is off and Ansible will
only log to STDOUT. Turning logging on in the config file causes Ansible to
log its activities to the file defined in the config setting log_path.

Alternatively, setting the ANSIBLE_LOG_PATH variable to a path that can be written
to by the user running ansible-playbook will also cause Ansible to log actions to
this path. The verbosity of this logging matches that of the verbosity shown
onscreen. By default, no variables or return details are displayed onscreen.
With a verbosity level of one (-v), return data is displayed onscreen (and
potentially in the local log file). With verbosity turned up to level three (-vvv),
the input parameters may also be displayed. Since this can include secrets,
the no_log setting applies to the onscreen display as well. Let's take our
previous example of displaying an encrypted secret and add a no_log key to
the task to prevent showing its value, as follows:

- name: show me an encrypted var

 hosts: localhost

 gather_facts: false

 vars_files:

 - a_vars_file.yaml

 tasks:

 - name: print the variable

 debug:

 var: something

 no_log: true

If we execute this playbook, we should see that our secret data is protected,
as shown in the following screenshot:

As you can see, Ansible censored itself to prevent showing sensitive data.

The no_log key can be used as a directive for a play, a role, a block, or a task.

Summary
In this chapter, we covered how Ansible can deal with sensitive data
effectively and securely, harnessing the latest Ansible features, including
securing differing data with different passwords, and mixing encrypted data
with plain YAML. We have also shown how this data is stored at rest and
how this data is treated when utilized, and that with a little care and attention,
Ansible can keep your secrets secret.

You learned how to use the ansible-vault tool to protect sensitive data by
creating and editing encrypted files, modifying them, and the variety of
methods available for providing the Vault password, including prompting the
user, obtaining the password from a file, and running a script to retrieve it.
You also learned how to mix encrypted strings with plain YAML files, and
how this simplifies playbook layout. Finally, you learned the operational
aspects of using Ansible Vaults, thus preventing Ansible from leaking data to
remote log files or onscreen displays.

In our next chapter, we will explore how the power of Ansible is now
available for Windows hosts, and how to harness this.

Ansible and Windows - Not Just for
Linux
A great deal of the work on Ansible has been performed on Linux OSes;
indeed, the previous two editions of this book were based entirely around the
use of Ansible in a Linux-centric environment. However, most environments
are not like that, and, at the very least, are liable to have at least some
Microsoft Windows server and desktop machines. Since the second edition of
this book was published, a lot of work has gone into Ansible to create a really
robust cross-platform automation tool that is equally at home in both a Linux
data center and a Windows data center. There are fundamental differences in
the way Windows and Linux hosts operate, of course, and so it should come
as no surprise that there are some fundamental differences between the way
in which Ansible automates tasks on Linux, and how it automates tasks on
Windows. We will cover those fundamentals in this chapter, in order to give
you a rock solid foundation to start automating your Windows tasks with
Ansible, specifically covering the following areas:

Running Ansible from Windows
Setting up Windows hosts for Ansible control
Handling Windows authentication and encryption
Automating Windows tasks with Ansible

Technical requirements
Check out the following video to see the Code in Action:

http://bit.ly/2Jtvz5u

http://bit.ly/2Jtvz5u

Running Ansible from Windows
If you browse the official installation documentation for Ansible, you will
find a variety of instructions for most mainstream Linux variants, Solaris,
macOS, and FreeBSD. You will note, however, that there is no mention of
Windows. The good news is that, if you are running recent versions of
Windows 10 or Windows Server 2016, installing and running Ansible is now
incredibly easy thanks to Windows Subsystem for Linux (WSL). This
technology allows Windows users to run unmodified Linux distributions on
top of Windows without the complications or overheads of a virtual machine,
and, as such, this lends itself perfectly to running Ansible, as it can be
installed and run with ease.

The official Ansible installation documentation can be found at https://docs.ansible.com/ansible/
latest/installation_guide/intro_installation.html.

https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html

Checking your build
WSL is only available on specific builds of Windows, as follows:

Windows 10—version 1607 (build 14393) or later:
Note that you will need build 16215 or later if you want to install
Linux through the Microsoft Store
Only 64-bit versions of Windows 10 are supported

Windows Server 2019—version 1709 (build 16237) or later

You can easily check your build and version number in PowerShell by
running the following command:

systeminfo | Select-String "^OS Name","^OS Version"

If you are running an earlier version of Windows, running Ansible is still
possible, either through a virtual machine or via Cygwin. However, these
methods are beyond the scope of this book.

Enabling WSL
Once you have verified your build, enabling WSL is easy. Simply open
PowerShell as an administrator and run the following command:

Enable-WindowsOptionalFeature -Online -FeatureName Microsoft-Windows-Subsystem-Linux

Once the installation completes successfully, you will be able to select and
install your preferred Linux distribution. A number are available, but for
running Ansible, it makes sense to choose one of those listed in the official
Ansible installation instructions, such as Debian or Ubuntu.

Installing Linux under WSL
If you have a recent enough build of Windows 10, then installing your
preferred Linux is as easy as opening the Microsoft Store and searching for it.
For example, search for Ubuntu and you should find it easily. This is
displayed in the following screenshot:

Click on the Get button and wait for the installation to complete. If you are
running Windows 10, but a build earlier than 16215, or indeed Windows
Server 2019, then the installation of Linux is a slightly more manual process.
First of all, download your preferred Linux distribution from Microsoft—for
example, Ubuntu can be downloaded using the following PowerShell
command:

Invoke-WebRequest -Uri https://aka.ms/wsl-ubuntu-1804 -OutFile Ubuntu.appx -UseBasicParsing

Once successfully downloaded, unzip the Ubuntu.appx file—this can be
unzipped to any location provided that it is on the system (boot) drive,
normally C:. If you want to keep your Linux distribution private, it can be
unzipped somewhere within your profile directory, otherwise you can unzip
the file anywhere on the system drive. For example, the following
PowerShell commands would unzip the archive into C:\WSL\:

Rename-Item Ubuntu.appx Ubuntu.zip

Expand-Archive Ubuntu.zip C:\WSL\Ubuntu

Once completed, you can launch your newly-installed Linux distribution
using the executable named after the distribution itself. In the case of our
Ubuntu example, you would run the following:

C:\WSL\Ubuntu\ubuntu.exe

The first time you run your newly installed Linux distribution, whether it was
installed through the Microsoft Store or installed manually, it will initialize
itself. As part of this process, it will ask you to create a new user account.
Please note that this account is independent of your Windows username and
password, so be sure to remember the password you set here! You will need
it every time you run commands through sudo (for example), although, as with
any Linux distribution, you can customize this behavior through /etc/sudoers if
you wish. This is demonstrated in the following screenshot:

Congratulations! You now have Linux running under WSL. From here, you
should follow the standard installation process for Ansible, and you can run it
from your Linux subsystem just as you would on any other Linux box.

Setting up Windows hosts for
Ansible control
So far, we have talked about running Ansible itself from Windows. This is
helpful, especially in a corporate environment where perhaps Windows end
user systems are the norm. However, what about actual automation tasks?
The good news is that automation of Windows with Ansible does not require
WSL. One of Ansible's core premises is to be agentless, and that remains true
for Windows as for Linux. Just as it is fair to assume that almost any modern
Linux host will have SSH access enabled, most modern Windows hosts have
a remote management protocol built in, called WinRM. For security reasons,
this technology is disabled by default, and so, in this part of the book, we
walk through the process for enabling and securing WinRM for remote
management with Ansible.

System requirements for
automation with Ansible
The use of WinRM means a wide array of support for Windows versions new
and old—under the hood, just about any Windows version that supports the
following will work:

PowerShell 3.0
.NET 4.0

In practice, this means that the following Windows versions can be
supported, provided the preceding requirements are met:

Desktop: Windows 7 SP1, 8.1, and 10
Server: Windows Server 2008 SP2, 2008 R2 SP1, 2012, 2012 R2, 2016,
and 2019

Note that the older OSes listed previously (such as Windows 7 or Server
2008) did not ship with .NET 4.0 or PowerShell 3.0, and these will need to be
installed before they can be used with Ansible. Note that newer versions of
PowerShell are supported, and, equally, there may be security patches for
.NET 4.0. Given that, in a business environment, there are likely to be
policies and procedures already in place for this kind of thing, incorporating
the older OSes listed previously is beyond the scope of this text.

A bug exists in WinRM under PowerShell 3.0 that limits the memory available to the
service, which, in turn, can cause some Ansible commands to fail. This is resolved by
ensuring KB2842230 is applied to all hosts running PowerShell 3.0.

Enabling the WinRM listener
Once all the system requirements have been met, as detailed previously, the
task that remains is to enable the WinRM listener. With this achieved, we can
actually run Ansible tasks against the Windows host itself! WinRM can run
over both HTTP, and HTTPS protocols, and, while it is quickest and easiest
to get up and running over plain HTTP, this leaves you vulnerable to packet
sniffers and the potential for sensitive data to be revealed on the network.
This is especially true if basic authentication is being used. By default, and
perhaps unsurprisingly, Windows does not allow remote management with
WinRM over HTTP or using basic authentication.

Sometimes, basic authentication is sufficient (for example, in a development
environment), and if it is to be used, then we definitely want to enable
HTTPS as the transport for WinRM! However, later in the chapter, we will
look at Kerberos authentication, which is preferable, and also enables the use
of domain accounts. For now though, to demonstrate the process of
connecting Ansible to a Windows host with a modicum of security, we will
enable WinRM over HTTPS using a self-signed certificate, and enable basic
authentication to allow us to work with the local Administrator account.

For WinRM to function over HTTPS, there must exist a certificate that has
the following:

A CN matching the hostname
Server Authentication (1.3.6.1.5.5.7.3.1) in the Enhanced Key Usage field

Ideally, this should be generated by a central certificate authority (CA) to
prevent man-in-the-middle attacks and such—more on this later. For the sake
of simplicity, we will generate a self-signed certificate. Run
the following command in PowerShell to generate a suitable certificate:

New-SelfSignedCertificate -CertStoreLocation Cert:\LocalMachine\My -DnsName "$env:computername" -FriendlyName "WinRM HTTPS Certificate" -NotAfter (Get-Date).AddYears(5)

The New-SelfSignedCertificate command is only available on newer versions of Windows—if
it is not available on your system, consider using the automated PowerShell script

provided by Ansible available at https://raw.githubusercontent.com/ansible/ansible/devel/examples/script
s/ConfigureRemotingForAnsible.ps1.

This should yield something like the following—make a note of the
certificate thumbprint, as you will need it later:

With the certificate in place, we can now set up a new WinRM listener with
the following command:

New-Item -Path WSMan:\Localhost\Listener -Transport HTTPS -Address * -CertificateThumbprint <thumbprint of certificate>

When successful, that command sets up a WinRM HTTPS listener on port
5986 with the self-signed certificate we generated earlier. To test this setup, we
need to perform two more steps—open up this port on the firewall, and
enable basic authentication so that we can test using the local Administrator
account. This is achieved with the following two commands:

New-NetFirewallRule -DisplayName 'WinRM HTTPS Management' -Profile Domain,Private -Direction Inbound -Action Allow -Protocol TCP -LocalPort 5986

Set-Item -Path "WSMan:\localhost\Service\Auth\Basic" -Value $true

You should see output from the previous commands as follows:

https://raw.githubusercontent.com/ansible/ansible/devel/examples/scripts/ConfigureRemotingForAnsible.ps1

These commands have been broken out individually to give you an idea of
the process involved in setting up a Windows host for Ansible connectivity.
For automated deployments, and systems where New-SelfSignedCertificate isn't
available, consider using the ConfigureRemotingForAnsible.ps1 script available on
the official Ansible GitHub account here:

https://raw.githubusercontent.com/ansible/ansible/devel/examples/scripts/ConfigureRemo

tingForAnsible.ps1

This script performs all the steps we completed previously (and more), and
can be downloaded and run in PowerShell as follows:

$ansibleconfigurl = "https://raw.githubusercontent.com/ansible/ansible/devel/examples/scripts/ConfigureRemotingForAnsible.ps1

$ansibleconfig = "$env:temp\ConfigureRemotingForAnsible.ps1"

(New-Object -TypeName System.Net.WebClient).DownloadFile($ansibleconfigurl, $ansibleconfig)

powershell.exe -ExecutionPolicy ByPass -File $ansibleconfig

There are many other ways to roll out the required configuration of WinRM
for Ansible, including via Group Policy—however, this section sufficiently

https://raw.githubusercontent.com/ansible/ansible/devel/examples/scripts/ConfigureRemotingForAnsible.ps1

outlines the steps involved for successful future rollout.

Connecting Ansible to Windows
Once WinRM is configured, getting Ansible talking to Windows is fairly
straightforward, provided you bear two caveats in mind—it expects to use the
SSH protocol, and if you don't specify a user account, it will attempt to use
the same user account that Ansible is being run under to connect. This is
almost certainly not going to work with a Windows username.

Also, note that Ansible requires the winrm Python module installed to connect
successfully. This is not always installed by default, so it is worth testing for
it on your Ansible system before you start working with Windows hosts. If
it's not present, you will see something like the error shown in the following
screenshot:

If you see this error, you will need to install the module before proceeding
any further. There may be a prepackaged version available for your OS—for
example, on CentOS 7, you can install it with the following command:

sudo yum install python2-winrm

If a packaged version is not available, install it directly from pip using the
following command:

sudo pip install "pywinrm>=0.3.0"

Once this is complete, we can test to see whether our earlier WinRM
configuration work was successful. For SSH-based connectivity, there is an
Ansible module called ping, which performs a full end-to-end test to ensure
connectivity, successful authentication, and a usable Python environment on
the remote system. Similarly, there exists a module called win_ping, which
performs an analogous test on Windows.

In my test environment, I would prepare an inventory as follows to connect to
my newly configured Windows host:

[windows]

192.168.81.150

[windows:vars]

ansible_user=Administrator

ansible_password="password"

ansible_port=5986

ansible_connection=winrm

ansible_winrm_server_cert_validation=ignore

Note the connection specific variables beginning ansible_ that are being set in
the windows:vars section of the playbook. At this stage, they should be fairly
self-explanatory, as they were covered earlier in the book, but, in particular,
note the ansible_winrm_server_cert_validation variable, which needs to be set to
ignore when working with self-signed certificates. Obviously, in a real-world
example, you would not leave the ansible_password parameter in clear text—it
would either be placed in an Ansible vault, or prompted for upon launch
using the --ask-pass parameter.

Certificate-based authentication is also possible with WinRM, which carries with it more
or less the same benefits and risks as SSH key-based authentication.

Using the previous inventory (with appropriate changes for your environment
such as hostname/IP addresses and authentication details), we can run the
following command to test connectivity:

ansible -i windows-hosts -m win_ping all

If all goes well, you should see some output like the following:

That completes a successful end-to-end setup of an Ansible host to a
Windows one! From such a setup, you can author and run playbooks just as
you would on any other system, except that you must work with Ansible
modules that specifically support Windows. Next, we will work on
improving the security of our connection between Ansible and Windows,
before finally moving on to some examples of Windows playbooks.

Handling Windows authentication
and encryption
Now that we have established the basic level of connectivity required for
Ansible to perform tasks on a Windows host, let's dig deeper into the
authentication and encryption side of things. In the earlier part of the chapter,
we used the basic authentication mechanism with a local account. While this
is fine in a testing scenario, what happens in a domain environment? Basic
authentication only supports local accounts, so clearly we need something
else here. We also chose not to validate the SSL certificate (as it was self-
signed), which again, is fine for testing purposes, but is not best practice in a
production environment. In this section, we will explore options for
improving the security of our Ansible communications with Windows.

Authentication mechanisms
Ansible, in fact, supports five different Windows authentication mechanisms
as follows:

Basic: Supports local accounts only
Certificate: Supports local accounts only, conceptually similar to SSH
key-based authentication
Kerberos: Supports AD accounts
NTLM: Supports both local and AD accounts
CredSSP: Supports both local and AD accounts

It is worth noting that Kerberos, NTLM, and CredSSP all provide message
encryption over HTTP, which improves security. However, we have already
seen how easy it is to set up WinRM over HTTPS, and WinRM management
over plain HTTP is not enabled by default anyway, so we will assume that
the communication channel is already encrypted. WinRM is a SOAP protocol
meaning it must run over a transport layer such as HTTP or HTTPS. To
prevent remote management commands being intercepted on the network, it
is best practise to ensure WinRM runs over the HTTPS protocol.

Of these authentication methods, the one that interests us most is Kerberos.
Kerberos (for the purpose of this chapter) effectively supersedes NTLM for
Ansible authentication against Active Directory accounts. CredSSP provides
another mechanism, but there are also security risks relating to the
interception of clear-text logons on the target host that are best understood
before it is deployed—in fact, it is disabled by default.

Before we move on to configuring Kerberos, a brief note about certificate
authentication. Although initially, this might seem appealing, as it is
effectively passwordless, current dependencies in Ansible mean that the
private key for the certificate authentication must be unencrypted on the
Ansible automation host. In this regard, it is actually more secure (and wiser)
to place the password for either a basic or Kerberos authentication session in

an Ansible vault. We have already covered basic authentication, and so we
will focus our efforts on Kerberos here.

As Kerberos authentication only supports Active Directory accounts, it is
assumed that the Windows host to be controlled by Ansible is already joined
to the domain. It is also assumed that WinRM over HTTPS has already been
set up, as discussed earlier in the chapter.

With these requirements in place, the first thing we have to do is install a
handful of Kerberos-related packages on the Ansible host itself. The exact
packages will depend upon your chosen OS, but on CentOS 7, it would look
like this:

sudo yum -y install python-devel krb5-devel krb5-libs krb5-workstation

On Ubuntu 16.04, you would install the following packages:

sudo apt-get install python-dev libkrb5-dev krb5-user

Package requirements for Kerberos support on a wider range of OSes are available on
the Ansible documentation for Windows Remote Management: https://docs.ansible.com/ansible/
latest/user_guide/windows_winrm.html.

In addition to these packages, we also need to install the pywinrm[kerberos]
Python module. Availability of this will vary—on CentOS 7, it is not
available as an RPM, so we need to install it through pip as follows:

sudo yum install python-pip gcc

sudo pip install pywinrm[kerberos]

Note that gcc is needed by pip to build the module—this can be removed afterward if no
longer required.

Next, ensure that your Ansible server can resolve your Active Directory
(AD)-related DNS entries. The procedure for this will vary according to the
OS and network architecture, and so is beyond the scope of this book
—suffice to say, your Ansible controller must be able to resolve your domain
controller and related entries for the rest of this procedure to work.

With DNS in place, next, add your domain to /etc/krb5.conf. For example, my
test domain is mastery.example.com, and my domain controller is WIN-
2NJFMR0MNBD.mastery.example.com, so the bottom of my /etc/krb5.conf looks like this:

https://docs.ansible.com/ansible/latest/user_guide/windows_winrm.html

[realms]

MASTERY.EXAMPLE.COM = {

 kdc = WIN-2NJFMR0MNBD.mastery.example.com

}

[domain_realm]

.mastery.example.com = MASTERY.EXAMPLE.COM

Note the capitalization—this is important! Test your Kerberos integration
using the kinit command with a known domain user account. Here is an
example using the Domain Administrator for my test domain:

Finally, let's create a Windows host inventory—note that it is almost identical
to the one we used in our basic authentication example; only this time, we
have specified the Kerberos domain after the username:

[windows]

192.168.81.150

[windows:vars]

ansible_user=administrator@MASTERY.EXAMPLE.COM

ansible_password="password"

ansible_port=5986

ansible_connection=winrm

ansible_winrm_server_cert_validation=ignore

Now, we can test connectivity just like before:

Success! The previous result shows successful end-to-end connectivity with
Windows, including successful authentication, and access to the WinRM
subsystem.

A note on accounts
By default, WinRM is configured to only allow management by members of
the local Administrators group on a given Windows host. This does not have to
be the administrator account itself—we have used this here for demonstration
purposes. It is possible to enable the use of less privileged accounts for
WinRM management, but their use is likely to prove limited, as most Ansible
commands require a degree of privileged access. Should you wish to have a
less privileged account available to Ansible via WinRM, run the following
command on the host:

winrm configSDDL default

Running this command opens a Windows dialog box. Use this to add and
grant (as a minimum) the Read and Execute privileges to any user or group you
wish to have WinRM remote management capabilities.

Certificate validation
So far, we have been ignoring the self-signed SSL certificates used in
WinRM communication—obviously, this is less than ideal, and it is quite
straightforward to get Ansible to validate SSL certificates if they are not self-
signed.

The easiest way to do this if your Windows machines are members of a
domain is to use Active Directory Certificate Services (ADCs)—however,
most businesses will have their own certification process in place through
ADCS, or another third-party service. It is assumed, in order to proceed with
this section, that the Windows host in question has a certificate generated for
remote management, and that the CA certificate is available in Base64
format.

Just as we did earlier on the Windows host, you will need to set up an HTTPS
listener, but this time using the certificate signed by your CA. You can do so
(if not already completed) using a command such as the following:

 Import-Certificate -FilePath .\certnew.cer -CertStoreLocation Cert:\LocalMachine\My

Naturally, replace the FilePath certificate with the one that matches the
location of your own certificate. If you need to, you can delete any previously
created HTTPS WinRM listener with the following command:

winrm delete winrm/config/Listener?Address=*+Transport=HTTPS

Then, using the thumbprint from the imported certificate, create a new
listener:

New-Item -Path WSMan:\Localhost\Listener -Transport HTTPS -Address * -CertificateThumbprint <thumbprint of certificate>

Now to the Ansible controller. The first thing to do is to import the CA
certificate for the WinRM listener into the CA bundle for your OS. The
method and location for this will vary between OSes, but, on CentOS 7, you
can place the Base64-encoded CA certificate in /etc/pki/ca-

trust/source/anchors/.

Once this has been done, run the following commands:

update-ca-trust enable

update-ca-trust extract

Finally, we need to tell Ansible where to find the certificate. By default,
Ansible uses the Python Certifi module and will use the default path for this
unless we tell it otherwise. This process updates the CA bundle, located
in /etc/pki/ca-trust/extracted/pem/tls-ca-bundle.pem, and luckily, we can tell
Ansible where to find this in the inventory file. Note the two further changes
to the inventory file as shown in the following code—first of all, we have
now specified the full hostname for the Windows host rather than the IP
address, as the inventory hostname must match the CN on the certificate for
full validation to occur. Also, we have removed
the ansible_winrm_server_cert_validation line, which means all SSL certificates
are now implicitly validated:

[windows]

WIN-2NJFMR0MNBD.mastery.example.com

[windows:vars]

ansible_user=administrator@MASTERY.EXAMPLE.COM

ansible_password="password"

ansible_port=5986

ansible_connection=winrm

ansible_winrm_ca_trust_path=/etc/pki/ca-trust/extracted/pem/tls-ca-bundle.pem

If we run our ping test again, we should now see SUCCESS:

Obviously, we could improve our certificate generation to remove the
subjectAltName warning, but for now, this demonstrates Ansible connectivity to
Windows, with Kerberos authentication to a domain account and full SSL
validation. So far, in demonstrating this, we have only used the Ansible
win_ping module to test connectivity. While Windows playbooks for Ansible
could occupy a complete book on their own, let's wrap up the chapter with
some simple example playbooks.

Automating Windows tasks with
Ansible
A full list of the Windows modules for Ansible is available at the following
link, and it must be noted that, although you can use all the familiar Ansible
constructs with Windows hosts such as vars, handlers, and blocks, you must use
Windows-specific modules when defining tasks:

https://docs.ansible.com/ansible/latest/modules/list_of_windows_modules.html

In this part of the chapter, we will run through a few simple examples of
Windows playbooks to highlight a few of the things you need to know when
writing playbooks for Windows.

https://docs.ansible.com/ansible/latest/modules/list_of_windows_modules.html

Picking the right module
If you were running Ansible against a Linux server, and wanted to create a
directory and then copy a file into it, you would use the file and copy Ansible
modules, in a playbook that looks something like the following:

- name: Linux file example playbook

 hosts: all

 gather_facts: false

 tasks:

 - name: Create temporary directory

 file:

 path: /tmp/mastery

 state: directory

 - name: Copy across a test file

 copy:

 src: mastery.txt

 dest: /tmp/mastery/mastery.txt

However, on Windows, this playbook would fail to run, as the file and copy
modules are not compatible with WinRM. As a result, an equivalent
playbook to perform the same task, but on Windows, would look like this:

- name: Windows file example playbook

 hosts: all

 gather_facts: false

 tasks:

 - name: Create temporary directory

 win_file:

 path: 'C:\Mastery Test'

 state: directory

 - name: Copy across a test file

 win_copy:

 src: ~/src/mastery/mastery.txt

 dest: 'C:\Mastery Test\mastery.txt'

Note the following differences between the two playbooks:

win_file and win_copy are used in place of the file and copy modules for
Windows.
It is recommended in the documentation for the win_file and win_copy
modules to use a backslash (\) when dealing with remote (Windows

paths).
Continue to use forward slashes (/) on the Linux host.
Use single quotes (not double quotes) to quote paths that contain spaces.

It is always important to consult the documentation for the individual
modules used in your playbooks. For example, reviewing the documentation
for the win_copy module documentation, it recommends using the win_get_url
module for large file transfers because the WinRM transfer mechanism is not
very efficient.

Also note that, if a filename contains certain special characters (for example,
square braces), they need to be escaped using the PowerShell escape
character, `. For example, the following task would install the
c:\temp\setupdownloader_[aaff].exe file:

 - name: Install package

 win_package:

 path: 'c:\temp\setupdownloader_`[aaff`].exe'

 product_id: {00000000-0000-0000-0000-000000000000}

 arguments: /silent /unattended

 state: present

There are many other Windows modules that should suffice to complete your
Windows playbook needs, and, combined with these tips, you would get the
end results you need, quickly and with ease.

Installing software
Most Linux systems (and indeed other Unix variants) have a native package
manager that makes it easy to install a wide variety of software. The chocolatey
package manager makes this possible for Windows, and the Ansible
win_chocolatey module makes installing software in an unattended manner with
Ansible simple.

You can explore the chocolatey repository and find out more about it at https://chocolatey.org.

For example, if you wanted to roll out Adobe's Acrobat Reader across an
estate of Windows machines, you could use either the win_copy or win_get_url
modules to distribute the installer, and then the win_package module to install it.
However, the following code would perform the same task with less code:

- name: Install Acrobat Reader

 win_chocolatey:

 name: adobereader

 state: present

Discussing the chocolatey packaging system in greater depth is beyond the
scope of this book, but it deserves mention because of the ease of package
installation and management it brings to the Windows platform.

https://chocolatey.org

Extending beyond modules
Just as on any platform, there may come a time when the exact functionality
required is not available from a module. Although writing a custom module
(or modifying an existing one) are viable solutions to this, sometimes, a more
immediate solution is required. To this end, the win_command and win_shell
modules come to the rescue—these can be used to run literal PowerShell
commands on Windows. Many examples are available in the official Ansible
documentation, but the following code, for example, would create the
C:\Mastery directory using PowerShell:

 - name: Create a directory using PowerShell

 win_shell: New-Item -Path C:\Mastery -ItemType Directory

We could even revert to the traditional cmd shell for this task:

 - name: Create a directory using cmd.exe

 win_shell: mkdir C:\MasteryCMD

 args:

 executable: cmd

With these pointers, it should be possible to create the desired functionality in
just about any Windows environment.

Summary
Ansible handles Windows hosts as effectively as Linux (and other Unix)
ones. In this chapter, we covered both how to run Ansible from a Windows
host, and how to integrate Windows hosts with Ansible for automation,
including the authentication mechanisms, encryption, and even the basics of
Windows specific playbooks.

You have learned that Ansible can run from a recent build of Windows that
supports WSL, and how to achieve this. You have also learned how to set up
Windows hosts for Ansible control, and to secure this with Kerberos
authentication and encryption. Finally, you learned the basics of authoring
Windows playbooks, including finding the correct modules for use with
Windows hosts, escaping special characters, creating directories and copy
files for the host, installing packages, and even running raw shell commands
on the Windows host with Ansible. This is a sound foundation on which you
will be able to build out the Windows playbooks needed to manage your own
estate of Windows hosts.

In the next chapter, we will cover the effective management of Ansible in the
enterprise with AWX.

Infrastructure Management for
Enterprises with AWX
It is clear that Ansible is an incredibly powerful and versatile automation
tool, lending itself well to managing an entire estate of servers and network
devices. Mundane, repetitive tasks can be made repeatable and
straightforward with ease, hence a great deal of time can be saved!
Obviously, this is of great benefit in a corporate environment, but this power
comes at a price. If everyone has their own copy of Ansible on their own
machines, how do you know who ran what and when? How do you ensure
that all playbooks are correctly stored and version-controlled? Indeed, how
do you prevent the proliferation of superuser-level access credentials across
your organization while benefiting from the power of Ansible?

The answer to these questions comes in the form of AWX, an open source
enterprise management system for Ansible. AWX is the open source,
upstream version of the commercial Ansible Tower software available from
Red Hat, and it offers virtually the same features and benefits, but without the
support or stable release cycle that Red Hat offers. It must be said that AWX
could warrant its own book, but in this chapter, we hope to give you enough
information to get up and running with the basics of AWX, and the thirst for
further exploration, should you so desire.

We will cover the following in this chapter:

Getting AWX up and running
Integrating AWX with your first playbook
Going beyond the basics

Technical requirements
Check out the following video to see the Code in Action:

http://bit.ly/2JsHFeR

http://bit.ly/2JsHFeR

Getting AWX up and running
Before we get stuck into installing AWX, it is worth briefly exploring what
AWX is, and indeed isn't. AWX is a tool to be employed alongside Ansible.
It does not duplicate or replicate, in any way, the features of Ansible—
indeed, when Ansible playbooks are run from AWX, the ansible-playbook
binary is being called behind the scenes. Rather, AWX should be considered
a complementary tool that adds the following benefits, on which many
enterprises depend:

Rich role-based access control (RBAC)
Integration with centralized login services (for example, LDAP or
Active Directory)
Secure credential management
Auditability
Accountability
Lower barrier to entry for new operators
Improved management of playbook version control

Most of the AWX code runs in a set of Docker containers, which makes it
straightforward to deploy in most environments. However, as further proof
that AWX is a complementary tool to Ansible, it is installed using the ansible-
playbook command!

Given the use of Docker containers, it is possible to run AWX in OpenShift
or other Kubernetes environments—however, for the sake of simplicity here,
we will get started by installing it on a single Docker host. Before you
proceed any further, you should ensure that your chosen host has the
following:

Docker, fully installed and working
The docker-py module for your version of Python
Access to Docker Hub
Ansible 2.4 or newer

Git 1.8.4 or newer

With these tools in place, we start simply by cloning the AWX repository
from GitHub to the host on which it is to be installed:

git clone https://github.com/ansible/awx.git

The previous command will clone the latest development release of AWX—if you want to
clone one of the releases, browse the Releases section of the repository and check out the
desired version: https://github.com/ansible/awx/releases.

Now, change into the installer directory under the cloned repository:

cd awx/installer

By now, the contents of this directory should be familiar to you—we have an
inventory file, and a playbook on which to install AWX! Edit the inventory
file before proceeding any further—as you will see, there are many variables
that can be configured, and most of them are well documented in the
comments on the inventory file. As a bare minimum to get started, I
recommend setting the following variables:

Variable
name Recommended value

admin_password

This is the default password for the admin user—you
will need this the first time you log in, so be sure to set
it to something memorable and secure!

pg_password

This is the password for the backend PostgreSQL
database—be sure to set it to something unique and
secure.

postgres_data_dir

This is the directory on the local filesystem where the
PostgreSQL container will store its data—it defaults to
a directory under /tmp which, on most systems, will be
automatically cleaned up on a regular basis. This often
destroys the PostgreSQL database, so set it to
something safe (for example, /var/lib/awx/pgdocker).

For uploading playbooks manually to AWX without the

https://github.com/ansible/awx/releases

project_data_dir

need for a version control system, the playbooks must
sit somewhere on the filesystem. To prevent having to
copy them into a container, this variable maps the local
folder specified to the required one inside a container.
For the examples in this book, we will use the default
(the /var/lib/awx/projects folder).

rabbitmq_password
This is the password for the backend RabbitMQ service
—be sure to set it to something unique and secure.

secret_key

This is the secret key used to encrypt credentials in the
PostgreSQL database. It must be the same between
upgrades of AWX, so be sure to store it somewhere
secure as it will need to be set in future AWX
inventories. Make this something long and secure.

You will, by now, have spotted that the previous file contains many secret
values that lend themselves well to being stored in a Vault, but are in fact
stored in the clear in the inventory file. It is assumed that you will delete the
previous inventory once installation is complete, and it is highly
recommended you do so!

Once the inventory is edited to your satisfaction, simply run the following
command to install AWX:

sudo ansible-playbook -i inventory install.yml

That's all there is to it—when the playbook run finishes, the installation
process is complete. If this is the first time you have installed AWX, you
might need to give the system a few minutes to settle as the Docker
containers start up and database schema is created. Once this completes,
however, you will be able to log into AWX. Note here that the AWX web
interface (and indeed the API) run unencrypted using HTTP on port 80. It is
left up to the individual enterprise to configure SSL access to AWX—the
easiest way to do this is to firewall off port 80 from the outside world, and put
an SSL offloading setup in front of it. This could be a load balancer, reverse

proxy, or even the venerable stunnel utility. For example, if we have installed
AWX on CentOS 7, we could perform the following process:

1. First of all, let's install NGINX (note that this requires that the EPEL
repository is installed and enabled for CentOS 7):

sudo yum install nginx

2. Next, we're going to need an SSL certificate for NGINX to use. If you
have one, copy the certificate and associated private key to the following
locations:

Certificate: /etc/pki/tls/certs/mastery.example.com.crt
Private key: /etc/pki/tls/private/mastery.example.com.key

If you don't have an SSL certificate, you can easily generate a self-
signed one to complete this example using the following command:

openssl req -x509 -nodes -newkey rsa:4096 -keyout /etc/pki/tls/private/mastery.example.com.key -out /etc/pki/tls/certs/mastery.example.com.crt -days 3650 -subj "/C=GB/CN=mastery.example.com"

3. Tailor the details to match your system—for
example, /CN=mastery.example.com is the common name of the certificate,
and should match the hostname of the AWX system.

4. Once your certificate is in place, create the /etc/nginx/conf.d/awx.conf file
with the following contents:

server {

 listen 443 ssl;

 server_name mastery.example.com;

ssl on;

 ssl_certificate /etc/pki/tls/certs/mastery.example.com.crt;

 ssl_certificate_key /etc/pki/tls/private/mastery.example.com.key;

location / {

 proxy_pass http://127.0.0.1:80;

 proxy_set_header Host $host;

 proxy_set_header X-Real-IP $remote_addr;

 proxy_set_header X-Forwarded-Proto $scheme;

 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;

 }

}

5. Now we will edit /etc/nginx/nginx.conf and change the lines telling it to
listen on port 80 to another port that we are not using—one of the Docker

containers created earlier will be listening on port 80 already, so the nginx
service won't start if we don't reassign this. Here's an example:

server {

 listen 81 default_server;

 listen [::]:81 default_server;

6. Enable and start the service:

sudo systemctl enable nginx.service

sudo systemctl start nginx.service

7. Finally, we will open up port 443 on the local firewall to allow this traffic
in:

sudo firewall-cmd --permanent --add-service=https

sudo firewall-cmd --reload

Now we have a fully configured AWX service, and users should be able to
access it using SSL! As discussed, there are many ways to enable SSL
encryption of the AWX service, and the previous code should be used as an
example only.

When you first log into AWX, you will be presented with a dashboard screen
and a menu bar down the left-hand side. It is through this menu bar that we
will explore AWX and perform our first configuration work. Equally, it is
worth noting that when AWX is first installed, some example content is
populated to help you get up to speed quicker. Feel free to explore the demo
content as the examples are different to those given in this book.

Let's get started on getting our first playbook integrated and running with
AWX.

Integrating AWX with your first
playbook
There is a basic four-stage process involved in getting a playbook to run from
AWX, and once this is understood, it paves the way for more advanced usage
and fuller integration in an enterprise environment. In this part of the chapter,
we will master these four stages in order to get to the stage where we can run
our first simple playbook, and this will give us the building blocks to move
forwards with AWX in confidence. The four stages are as follows:

1. Define a project.
2. Define an inventory.
3. Define credentials.
4. Define a template.

The first three stages can be performed in any order, but the template
mentioned in the final stage pulls together the three previously-created facets,
and so, it must be defined last. Also, note that there does not need to be a
one-to-one relationship between these items—several templates can be
created from one project, as is also the case for inventories and credentials.

Before we get started, we need a simple playbook for use in our examples as
we go through this part of the chapter. First of all, on the AWX host, create a
folder for the project—if you used the recommended path suggested earlier in
the chapter, this will be /var/lib/awx/projects.

Every locally hosted project must have its own folder, so let's create one here:

sudo mkdir /var/lib/awx/projects/mastery

Now place the following example code into this folder as example.yaml:

- name: AWX example playbook

 hosts: all

 gather_facts: false

 tasks:

 - name: Create temporary directory

 file:

 path: /tmp/mastery

 state: directory

 - name: Create a file with example text

 lineinfile:

 path: /tmp/mastery/mastery.txt

 line: 'Created with Ansible Mastery!'

 create: yes

With this done, we can proceed to defining a project.

Defining a project
A project, in AWX terms, is a simply a collection of Ansible playbooks
grouped together. These collections of playbooks are often retrieved from a
Source Control Management (SCM) system, and indeed, this is the
recommended way to host Ansible playbooks in an enterprise. Using an SCM
means that everyone is working from the same version of code, and all
changes are tracked—all elements that are vital in an enterprise environment.

With regards to the grouping of playbooks, there is no right or wrong way to
organize projects, so this is very much up to the teams involved. Put simply,
one project links to one repository, and so where it makes sense for multiple
playbooks to live in one repository, it would make sense for them to live in
one project within AWX.

For the sake of simplicity, it is also possible to store Ansible playbooks
locally. This is useful when testing or when starting out, and we will utilize
this capability in our example here.

Logging into the AWX interface using the admin account, click on the
projects link on the left-hand menu bar. Then click on the green + button
near the top right of the window—this creates a new blank project for us.

For now, we not need to worry about all the fields (more on some of these
later)—however, we now need to configure the following:

Field Name Value Notes

NAME Mastery Examples
A unique name to distinguish the
project from the others.

SCM TYPE Manual

Refers to the source of the playbook
code—note the other options
available in the drop-down list. Manual
refers to playbooks on the local disk.

PLAYBOOK
DIRECTORY

mastery

This is the name of the directory we
defined earlier in the chapter, and put
our example.yaml file in.

The end result should look something like this:

Click the green SAVE button to store your edits. That's it—you have defined
your first Project in AWX! From here, we can define an inventory.

Defining an inventory
Inventories in AWX work exactly the same as inventories that we worked
with earlier on the command line. They can be static or dynamic, can consist
of groups and/or individual hosts, and can have variables defined on a global
per group or per host basis—we are now simply defining them through a user
interface.

Click on the Inventories item on the left-hand menu bar. As with projects, we
want to define something new, so click on the green + button near the top
right of the window and a drop-down list will appear. Select Inventory from
this list.

When the NEW INVENTORY definition screen appears, enter a name for the
inventory (for example, Mastery Demo), and then click the green SAVE button.

You must save your blank inventory before you can start defining hosts or groups.

When this is completed, you should have a screen that looks something like
this:

Now, note the buttons along the top of the inventories pane—DETAILS,
PERMISSIONS, GROUPS, HOSTS, SOURCES, and COMPLETED JOBS.
You will find buttons like these on almost every pane in the AWX user
interface and, indeed, we saw them when we defined our first project earlier
(we just didn't need to use them at that stage). These work just like tabs, and
clicking on each will load new contents into the pane for the appropriate
configuration work to take place.

Keeping our example simple, we will define one host in a group to run our
example playbook against. Click on the GROUPS tab button, and then click
on the green + to add a new group. Give the group a name and click SAVE,
as shown in the following screenshot:

Now click on the HOSTS tab button, and then click on the green + and select
new host from the drop-down menu. Enter the IP address of your AWX host
into the HOST NAME field and click SAVE—the end result should look
something like this:

The VARIABLES box seen on most of the inventory screens expects variables to be
defined in YAML or JSON format, and not the INI format we used on the command line.

Where earlier we had defined variables such as ansible_ssh_user=james, we would now
enter ansible_ssh_user: james if the YAML mode is selected.

Well done! You've just created your first inventory in AWX. If we were to
create this inventory on the command line, it would look like this:

[Mastery Group]

192.168.81.149

It might be simple, but it paves the way for us to run our first playbook. Next,
let's look at the concept of credentials in AWX.

Defining credentials
One of the ways in which AWX lends itself to an enterprise is the secure
storage of credentials. Ansible, given its nature and typical use cases, is often
given the "keys to the kingdom" in the form of SSH keys or passwords that
have root or other administrative level privileges. Even if encrypted in a
Vault, the user running the playbook will have the encryption password and
hence can obtain the credentials. Obviously, this may not be a desirable
scenario, having many people with uncontrolled access to administrator
credentials, but luckily for us, AWX solves this issue.

Let's take a simple example—suppose my test host, which we defined the
inventory for previously, has a root password of Mastery123!. How do we store
this securely?

First of all, navigate to the Credentials menu item, and then click the green +
as we have done previously to create something new. Give the credential an
appropriate name (for example, Mastery Login) and then click on the
magnifying glass next to the CREDENTIAL TYPE field. You will see that
there are many different credential types that AWX can store, and for a
machine login, such as ours, we want to select the Machine type. Once the
credential type is set, you will see that the screen changes and fields
appropriate to creating a machine credential have appeared. We could define
the login based on the SSH key and various other parameters, but in our
simple example, we will simply set the USERNAME and PASSWORD to
the appropriate values:

Now, SAVE the credential. As soon as it is saved, you will note that the
password disappears and is replaced by the string ENCRYPTED. It is now
impossible to retrieve the password (or SSH key, or other sensitive data)
through the AWX user interface—you will notice that you can REPLACE the
existing value, but cannot see it. The only way to get the credential would be
to get both connectivity to the backend database, and the encryption key used
at the time of installation. As discussed earlier, these should be secured
elsewhere, and so, as long as AWX operators are not given root access to the
AWX machine itself, the credentials remain secure and under control.

In this way, AWX has protected your sensitive access data in a manner not
totally dissimilar to Ansible Vault (note that Ansible Vault remains a
command-line tool and, although Vault data can be used in playbooks in
AWX exactly as it can when Ansible is used on the command line, Vault
creation and modification remains a command-line activity). Now, let's
proceed to the final step necessary to run our first ever playbook from AWX
—defining a template.

Defining a template
A job template—to give it its full name—is a way of pulling together all the
previously-created configuration items, along with any other required
parameters, to run a given playbook against an inventory. Think of it as
defining how you would run ansible-playbook if you were on the command line.

Let's dive right in and create our template by carrying out the following steps:

1. Click on Templates from the left-hand menu.
2. Click on the green + to create a new template.
3. Select Job Template from the drop-down list.
4. As a minimum to run our first job, you will need to define the following

fields on the NEW JOB TEMPLATE screen:

Field name Values Notes

NAME Mastery Template
A unique name for the job template
to identify it.

JOB TYPE Run

The default here is Run, which is
exactly what we want to do. We
could also select Check, which runs
the playbook using the defined
parameters, without making any
changes on the inventory hosts.

INVENTORY Mastery Demo

Click on the magnifying glass icon
in this field, and then select the
inventory you created earlier in this
process.

PROJECT Mastery Examples

Click on the magnifying glass icon
in this field and select the project
we created earlier in this chapter,
containing our example playbook.

PLAYBOOK example.yaml

Once the PROJECT field is
populated, the PLAYBOOK drop-
down menu is automatically
populated with a list of all files
with the *.yaml or *.yml extension,
which were found in the PROJECT
source. Note that if your
project was linked to an SCM, this
list will be blank.

CREDENTIAL Mastery Login

Click on the magnifying glass icon
in this field and select the
credential we created earlier.

This should result in a screen that looks something like this:

With all the fields populated, as in the previous screenshot, click on the
SAVE button. Congratulations! You are now ready to run your first playbook
from AWX. To do so, navigate back to the list of Templates and click on the

small rocket ship-icon to the right of our newly created template.
Immediately upon doing so, you will see the job execute, and will see the
output from ansible-playbook that we are familiar with from the command line,
as shown in the following screenshot:

On the left-hand side of the JOBS screen, you can see the DETAILS pane,
where all the fundamental parameters we defined earlier are listed, such
as PROJECT and JOB TEMPLATE, along with useful information for
auditing purposes, such as which user the job was LAUNCHED BY, and
times that the job STARTED and FINISHED. On the right-hand side, you
can see the raw output from ansible-playbook. You can access the JOBS screen
any time by clicking on the Jobs menu item on the menu bar, and browsing
all jobs that have been run—this is excellent for auditing the various
activities that AWX has been orchestrating, especially in a large multi-user
environment.

While there is much more that AWX is capable of, these fundamental stages
are central to most of the tasks you will want to perform in AWX. Therefore,
gaining an understanding of their usage and sequence is a good start to
learning how to use AWX. In the next section, we will take a look at some of
the more advanced things you can do with AWX.

Going beyond the basics
We have now covered the basics necessary to run your first playbook from
AWX, and indeed, the basics required for most Ansible automation from
within this environment, although we can't possibly cover all the advanced
features AWX has to offer in a single chapter. In this section, we will
highlight a few of the more advanced facets to explore if you wish to learn
more about AWX.

Role-based access control (RBAC)
So far, we have only looked at using AWX from the perspective of the built-
in admin user. Of course, one of AWX's features is RBAC, and this is achieved
by the use of users and teams. A team is basically a group of users, and users
can be a member of one or more teams.

Both users and teams can be created manually in the AWX user interface, or
through integration with an external directory service, such as LDAP or
Active Directory. In the case of directory integration, teams would most
likely be mapped to groups within the directory.

The RBAC's within AWX are rich; for example, a given user can be given
the ADMIN role within one team, and either MEMBER or READ roles in
another.

User accounts themselves can be set up as System Administrators, Normal
Users, or System Auditors.

In addition to this, as we stepped through the basic setup part of this chapter,
you will have noticed the tab buttons on just about every page of the AWX
user interface. Among these, there is almost always a tab called
PERMISSIONS, which allows true fine-grained access control to be
achieved.

For example, a given user of the Normal User type could be given the
ADMIN role within their assigned Team. However, they can then be assigned
the READ role on a given Project, which superseded the more general
ADMIN Team role. So, when they log in, they can see the Project in
question, but can't change it or execute any tasks; for example, an update
from SCM.

As a general rule of thumb, more specific privileges supersede less specific ones. So,
those at a Project level will take precedence over those at a Team or User level. Note
that, for items where no Permission is specified via either a User or their Team, that

person will not even see that item when logged into the user interface. The only exception
to these rules are System Administrators, who can see everything and perform any action.
Assign this type to User accounts sparingly!

There is a great deal to explore when it comes to RBAC, and, once you get
the hang of it, it is easy to create secure and tightly-locked-down
deployments of AWX where everyone has just the right amount of access.

Organizations
AWX contains a top-level configuration item called an organization. This is
a collection of inventories, projects, job templates, and teams (which, in
turn, are a grouping of users). Hence, if you have two distinct parts of an
enterprise that have entirely different requirements but still require the use of
AWX, they can share a single AWX instance without the need for
overlapping configuration in the user interface by virtue of organizations.

While users of the system administrator type have access to all organizations,
normal users will only see the organizations and associated facets, and they
are a really powerful way of segregating access to the differing parts of an
enterprise deployment of AWX.

By way of example, when we created our inventory earlier in the chapter, you
will notice that we ignored the ORGANIZATION field (which was set to
default—the only organization that exists on a new AWX install). If we were
to create a new organization called Mastery, then anyone who was not a
member of this organization would be unable to see this inventory, regardless
of the permissions or privileges they have (the exception to this being the
system administrator user type, which can see everything).

Scheduling
Some AWX configuration items, such as projects (which may need to update
from an SCM), or job templates (which perform a specific task), may need to
be run on a regular basis. Having a powerful tool such as AWX, but then
requiring operators to log in regularly to perform routine tasks, would be
pointless, so AWX has built-in scheduling.

On the definition page for any Project or Templates, simply look for the
Schedules tab button, and you then have a rich range of scheduling options
available to you—the following screenshot shows an example of scheduling
for the job template we created earlier:

Note the variety of options available to you for scheduling—we have
scheduled this job to run every two days, and end after five runs. A detailed
breakdown of the schedule is shown at the bottom of the screenshot, in order
to help you ensure that it is fit for your needs.

Auditing
One of the risks of running Ansible on the command line is that once a
particular task has been run, its output is lost forever. It is, of course, possible
to turn on logging for Ansible; but in an enterprise, this would need to be
enforced, and this would be difficult with lots of operators having root access
to a given Ansible machine, be it their own laptop or a server somewhere.
Thankfully, as we saw in our earlier example, AWX stores not only the
details of who ran what tasks and when, but also stores all the output from the
ansible-playbook tasks. In this way, compliance and auditability are achieved
for enterprises wishing to use Ansible.

Simply navigate to the Jobs menu item, and a list of all previously run jobs
(that the user has permission to see) will be shown. It is even possible to
repeat previously completed jobs directly from this screen simply by clicking
on the rocket-ship icon next to the job in question. Note that this immediately
launches the job with the same parameters it was launched with last time!

The following screenshot shows the job history for our demo AWX instance
being used for this book:

The previous screenshot shows an example of the jobs screen, taken from a
recently-configured AWX instance built for this book. In the screenshot, you
can clearly see the job that was run previously.

Surveys
Sometimes, when launching a job template, it is not possible (or desirable) to
define all information up front. While it is perfectly possible to define
parameters using variables in the AWX user interface, this is not always
desirable, especially if you don't wish to give a user the privileges to edit a
job template, only to run it.

Surveys provide the answer to this, and on any job template you have created
you will find a tab button at the top marked ADD SURVEY. A survey is
essentially a questionnaire (hence the name!) defined by an administrator,
where simple user input validation is performed, and then, once accepted, the
entered values are stored in Ansible variables.

For example, if we wanted to capture the http_port variable value for a job
template when it is run, we could create a survey as follows:

Now, when the playbook is run, the user is prompted to enter a value, and
AWX ensures it is an integer in the specified range. A sensible default is also

defined.

Workflow templates
Playbook runs, especially from AWX, can be complex. For example, it might
be desirable to update a project from SCM and any dynamic inventories first.
We might then run a job template to roll out some updated code. If it fails,
however, it would almost certainly be desirable to roll back any changes (or
take other remedial action). When you click on our now familiar green + for
adding a new template, you will see two options in the drop-down menu—job
template (which we have already worked with), and workflow template.

Once all the required fields are filled in for the new workflow template and it
is saved, you will be able to click on the WORKFLOW VISUALIZER tab
button. This effectively builds up a simple flow, from left to right, of tasks for
AWX to perform. For example, the following screenshot shows a workflow
where, initially, our demo project is synchronized with its SCM.

If that step succeeds (denoted by the green link to the next block), the demo
job template is run. If that in turn succeeds, then the mastery template is run.
If any of the preceding steps fail, then the workflow stops there, though an
On Failure action can be defined at any stage. Workflows, again, are an
advanced discussion beyond the scope of this book, but their presence is
worthy of note and further investigation. An example is shown in the
following screenshot:

In this way, we can powerfully build up multi-step workflows, taking
intelligent action after each stage, depending on whether it succeeded or not.

Notifications
As you have stepped through the AWX user interface, you will have noticed
that most screens have a tab button called NOTIFICATIONS. AWX has the
ability to integrate with many popular communication platforms, such as
Slack, IRC, Pagerduty, and even good old-fashioned email (this list is not
exhaustive). Once the configuration for a given platform is defined through
the user interface, NOTIFICATIONS can then be sent when specific events
occur.

For example, the following screenshot shows our previously configured
mastery template set up to email a given recipient list on the event that its
execution fails. On success, no notification is given (though this can be
turned on, of course!):

All NOTIFICATIONS defined in AWX appear in the NOTIFICATIONS tab
—they do not have to be added once defined. It is simply up to the user to
turn the SUCCESS and FAILURE notifications ON or OFF for each
notification service.

Summary
That concludes our whistle-stop tour of AWX. In this chapter, we showed
that AWX is easy to install and configure once you know the core four-step
process involved, and how to build on this with features such as surveys,
notifications, and workflows.

You learned that AWX is easy to install (in fact, it installs with Ansible
itself!), and how to add SSL encryption to it. You then built on this with an
understanding of how the platform works, and how to go from a fresh install
to building out projects, inventories, credentials, and templates to run Ansible
jobs. There are many additional features that build on this, which were
covered in the final part of this chapter in order to help you build a robust
enterprise management system for Ansible.

From here, we will return to the Ansible language and look at the benefits of
the Jinja2 templating system.

Section 2: Writing and
Troubleshooting Ansible Playbooks
In this section, you will gain a solid understanding of how to write robust,
versatile playbooks, suitable for use in a wide variety of use cases and
environments.

The following chapters are included in this section:

Chapter 5, Unlocking the Power of Jinja2 Templates

Chapter 6, Controlling Task Conditions

Chapter 7, Composing Reusable Ansible Content with Roles

Chapter 8, Troubleshooting Ansible

Chapter 9, Extending Ansible

Unlocking the Power of Jinja2
Templates
Manipulating configuration files by hand is a tedious and error-prone task,
and equally, performing pattern matching to make changes to existing files is
risky, and ensuring that the patterns are reliable and accurate is a time-
consuming task. Whether you are using Ansible to define configuration file
content, to perform variable substitution in tasks, evaluate conditional
statements, or beyond, templating comes into play with nearly every Ansible
playbook. In fact, given the importance of this task, it could be said that
templating is the lifeblood of Ansible.

The templating engine that was employed by Ansible is Jinja2, a modern and
designer-friendly templating language for Python. Jinja2 deserves a book all
of its own, but in this chapter, we will cover some of the more common usage
patterns of Jinja2 templating in Ansible to get you started, and give you a
taste for the power this can bring to your playbooks. In this chapter, we will
cover the following topics:

Control structures
Data manipulation
Comparisons

Technical requirements
Check out the following video to see the Code in Action:

http://bit.ly/2TOvvlo

http://bit.ly/2TOvvlo

Control structures
In Jinja2, a control structure refers to statements in a template that control the
flow of the engine parsing the template. These structures include, but are not
limited to, conditionals, loops, and macros. Within Jinja2 (assuming the
defaults are in use), a control structure will appear inside blocks of {% ... %}.
These opening and closing blocks alert the Jinja2 parser that a control
statement is provided instead of a normal string or variable name.

Conditionals
A conditional within a template creates a decision path. The engine will
consider the conditional and choose from two or more potential blocks of
code. There is always a minimum of two: a path if the conditional is met
(evaluated as true), and either an explicitly defined else path if the conditional
is not met (evaluated as false), or alternatively, an implied else path consisting
of an empty block.

The statement for conditionals is the if statement. This statement works much
the same as it does in Python. An if statement can be combined with one or
more optional elif with an optional final else, and unlike Python, requires an
explicit endif. The following example shows a config file template snippet
combining both regular variable replacement and an if else structure:

setting = {{ setting }}

{% if feature.enabled %}

feature = True

{% else %}

feature = False

{% endif %}

another_setting = {{ another_setting }}

In this example, the feature.enabled variable is checked to see if it exists, and is
not set to False. If this is True, then the text feature = True is used; otherwise, the
text feature = False is used. Outside of this control block, the parser does the
normal variable substitution for the variables inside the curly braces. Multiple
paths can be defined by using an elif statement, which presents the parser
with another test to perform should the previous tests equate to False.

To demonstrate rendering the template, we'll save the example template as
demo.j2 and then make a playbook named template-demo.yaml that defines the
variables in use, and then uses a template lookup as part of a pause task to
display the rendered template on the screen:

- name: demo the template

 hosts: localhost

 gather_facts: false

 vars:

 setting: a_val

 feature:

 enabled: true

 another_setting: b_val

 tasks:

 - name: pause with render

 pause:

 prompt: "{{ lookup('template', 'demo.j2') }}"

Executing this playbook will show the rendered template on screen while
waiting for input. We can simply press Enter to complete the playbook:

If we were to change the value of feature.enabled to False, the output would be
slightly different, as shown in the following screenshot:

As we can see from these simple tests, Jinja2 provides a very simple, yet
powerful way of defining data through conditionals in a template.

Inline conditionals
if statements can be used inside of inline expressions. This can be useful in
some scenarios where additional new lines are not desired. Let's construct a
scenario where we need to define an API as either cinder or cinderv2, as shown
in the following code:

API = cinder{{ 'v2' if api.v2 else '' }}

This example assumes that api.v2 is defined as Boolean True or False. Inline if
expressions follow the syntax of <do something> if <conditional is true> else <do
something else>. In an inline if expression, there is an implied else; however,
that implied else is meant to be evaluated as an undefined object, which will
normally create an error. We protect against this by defining an explicit else,
which renders a zero-length string.

Let's modify our playbook to demonstrate an inline conditional. This time,
we'll use the debug module to render the simple template, as follows:

- name: demo the template

 hosts: localhost

 gather_facts: false

 vars:

 api:

 v2: true

 tasks:

 - name: pause with render

 debug:

 msg: "API = cinder{{ 'v2' if api.v2 else '' }}"

Execution of the playbook will show the following template being rendered:

Changing the value of api.v2 to false leads to a different result, as shown in
the following screenshot:

In this way, we can create very concise, but powerful code that defines values
based on an Ansible variable, as we have seen here.

Loops
A loop allows you to build dynamically created sections in template files, and
is useful when you know you need to operate on an unknown number of
items in the same way. To start a loop control structure, the for statement is
used. Let's look at a simple way to loop over a list of directories where a
fictional service might find data:

data dirs

{% for dir in data_dirs -%}

data_dir = {{ dir }}

{% endfor -%}

By default, in Ansible 2.7.5, the {% %} blocks print an empty line when the template is
rendered. This may not be desirable in our output, and luckily, we can trim this by ending
the block with -%} instead. See the Jinja2 documentation at http://jinja.pocoo.org/docs/2.10/templ
ates/#whitespace-control for more details.

In this example, we will get one data_dir = line per item within the data_dirs
variable, assuming that data_dirs is a list with at least one item in it. If the
variable is not a list (or other iterable type) or is not defined, an error will be
generated. If the variable is an iterable type, but is empty, then no lines will
be generated. Jinja2 allows for the reacting to this scenario, and also allows
substituting in a line when no items are found in the variable via an else
statement. In the following example, assume that data_dirs is an empty list:

data dirs

{% for dir in data_dirs -%}

data_dir = {{ dir }}

{% else -%}

no data dirs found

{% endfor -%}

We can test this by modifying our playbook and template file again. We'll
update demo.j2 with the earlier template content and make use of a prompt in
our playbook again:

- name: demo the template

 hosts: localhost

 gather_facts: false

 vars:

 data_dirs: []

http://jinja.pocoo.org/docs/2.10/templates/#whitespace-control

 tasks:

 - name: pause with render

 pause:

 prompt: "{{ lookup('template', 'demo-for.j2') }}"

Running our playbook will show the following result:

We can see that the else statement in the for loop handled the empty data_dirs
list gracefully, exactly as we would wish for in a playbook run.

Filtering loop items
Loops can be combined with conditionals, as well. Within the loop structure,
an if statement can be used to check a condition using the current loop item
as part of the conditional. Let's extend our example and prevent the user of
this template from accidentally using / as a data_dir (actions performed on the
root directory of a filesystem can be dangerous, especially if
they're performed recursively):

data dirs

{% for dir in data_dirs -%}

{% if dir != "/" -%}

data_dir = {{ dir }}

{% endif -%}

{% else -%}

no data dirs found

{% endfor -%}

The preceding example successfully filters out any data_dirs item that is /, but
takes more typing than should be necessary. Jinja2 provides a convenience
that allows you to filter loop items easily as part of the for statement. Let's
repeat the previous example using this convenience:

data dirs

{% for dir in data_dirs if dir != "/" -%}

data_dir = {{ dir }}

{% else -%}

no data dirs found

{% endfor -%}

Not only does this structure require less typing, but it also correctly counts
the loops, which we'll learn about in the next section.

Loop indexing
Loop counting is provided for free, yielding an index of the current iteration
of the loop. As variables, this can be accessed in a few different ways. The
following table outlines the ways they can be referenced:

Variable Description
loop.index The current iteration of the loop (1 indexed)
loop.index0 The current iteration of the loop (0 indexed)

loop.revindex
The number of iterations until the end of the loop (1
indexed)

loop.revindex0
The number of iterations until the end of the loop (0
indexed)

loop.first Boolean True if the first iteration
loop.last Boolean True if the last iteration
loop.length The number of items in the sequence

Having information related to the position within the loop can help with logic
around what content to render. Considering our previous examples, instead of
rendering multiple lines of data_dir to express each data directory, we could
instead provide a single line with comma-separated values. Without having
access to loop iteration data, this would be difficult, but by using this data, it
can be fairly easy. For the sake of simplicity, this example assumes a trailing
comma after the last item is allowed, and that white space (new lines)
between items is also allowed:

data dirs

{% for dir in data_dirs if dir != "/" -%}

{% if loop.first -%}

data_dir = {{ dir }},

{% else -%}

{{ dir }},

{% endif -%}

{% else -%}

no data dirs found

{% endfor -%}

The preceding example made use of the loop.first variable to determine
whether it needed to render the data_dir = part, or if it just needed to render the
appropriately spaced padded directory. By using a filter in the for statement,
we get a correct value for loop.first, even if the first item in data_dirs is the
undesired /. To test this, we'll once again modify demo-for.j2 with the updated
template and modify template-demo-for.yaml to define some data_dirs, including
one of /, which should be filtered out:

- name: demo the template

 hosts: localhost

 gather_facts: false

 vars:

 data_dirs: ['/', '/foo', '/bar']

 tasks:

 - name: pause with render

 pause:

 prompt: "{{ lookup('template', 'demo-for.j2') }}"

Now, we can execute the playbook and see our rendered content, as follows:

If in the preceding example trailing commas were not allowed, we could

utilize inline if statements to determine whether we're done with the loop and
render commas correctly, as shown in the following example:

data dirs.

{% for dir in data_dirs if dir != "/" -%}

{% if loop.first -%}

data_dir = {{ dir }}{{ ',' if not loop.last else '' }}

{% else -%}

 {{ dir }}{{ ',' if not loop.last else '' }}

{% endif -%}

{% else -%}

no data dirs found

{% endfor -%}

Using inline if statements allows us to construct a template that will only
render a comma if there are more items in the loop that passed our initial
filter. Once more, we'll update demo-for.j2 with the earlier content and execute
the playbook:

The output is much the same as before, except this time, our template
evaluates whether to place a comma after each value of dir in the loop using
the inline if, removing the stray comma at the end of the final value.

Macros
The astute reader will have noticed that, in the previous example, we had
some repeated code. Repeating code is the enemy of any developer, and
thankfully, Jinja2 has a way to help! A macro is like a function in a regular
programming language; it's a way to define a reusable idiom. A macro is
defined inside a {% macro ... %} ... {% endmacro %} block and has a name, and
can take zero or more arguments. Code within a macro does not inherit the
namespace of the block calling the macro, so all arguments must be explicitly
passed in. Macros are called within curly brace blocks by name, and with
zero or more arguments passed in via parentheses. Let's create a simple
macro named comma to take the place of our repeating code:

{% macro comma(loop) -%}

{{ ',' if not loop.last else '' }}

{%- endmacro -%}

data dirs.

{% for dir in data_dirs if dir != "/" -%}

{% if loop.first -%}

data_dir = {{ dir }}{{ comma(loop) }}

{% else -%}

 {{ dir }}{{ comma(loop) }}

{% endif -%}

{% else -%}

no data dirs found

{% endfor -%}

Calling comma and passing it in the loop object allows the macro to examine
the loop and decide whether a comma should be omitted or not.

Macro variables
Macros have access to any positional or keyword argument passed along
when calling the macro. Positional arguments are arguments that are assigned
to variables, based on the order they are provided, while keyword arguments
are unordered, and explicitly assign data to variable names. Keyword
arguments can also have a default value if they aren't defined when the macro
is called. Three additional special variables are available:

varargs

kwargs

caller

The varargs variable is a holding place for additional unexpected positional
arguments that are passed along to the macro. These positional argument
values will make up the varargs list.

The kwargs variable is the same as varargs; however, instead of holding extra
positional argument values, it will hold a hash of extra keyword arguments
and their associated values.

The caller variable can be used to call back to a higher level macro that may
have called this macro (yes, macros can call other macros).

In addition to these three special variables, there are a number of variables
that expose internal details regarding the macro itself. These are a bit
complicated, but we'll walk through their usage one by one. First, let's take a
look at a short description of each variable:

name: The name of the macro itself
arguments: A tuple of the names of the arguments the macro accepts
defaults: A tuple of the default values
catch_kwargs: A Boolean that will be defined as true if the macro accesses
(and thus accepts) the kwargs variable
catch_varargs: A Boolean that will be defined as true if the macro accesses

(and thus accepts) the varargs variable
caller: A Boolean that will be defined as true if the macro accesses the
caller variable (and thus may be called from another macro)

Similar to a class in Python, these variables need to be referenced via the
name of the macro itself. Attempting to access these macros without
prepending the name will result in undefined variables. Now, let's walk
through and demonstrate the usage of each of them.

name
The name variable is actually very simple. It just provides a way to access the
name of the macro as a variable, perhaps for further manipulation or usage.
The following template includes a macro that references the name of the
macro to render it in the output:

{% macro test() -%}

{{ test.name }}

{%- endmacro -%}

{{ test() }}

Let's say we were to create demo-macro.j2 with this template and the
following template-demo-macro.yaml playbook:

- name: demo the template

 hosts: localhost

 gather_facts: false

 vars:

 data_dirs: ['/', '/foo', '/bar']

 tasks:

 - name: pause with render

 pause:

 prompt: "{{ lookup('template', 'demo-macro.j2') }}"

We would get the following output:

As we see from this test run, our template simply rendered with the macro
name and nothing else, just as expected.

arguments
The arguments variable is a tuple of the arguments the macro accepts. These are
the explicitly defined arguments, not the special kwargs or varargs. Our previous
example would have rendered an empty tuple (), so let's modify it to get
something else:

{% macro test(var_a='a string') -%}

{{ test.arguments }}

{%- endmacro -%}

{{ test() }}

Rendering this template will result in the following output:

In this example, we can clearly see that our template rendered with the name
of the arguments that the macro accepts (and not their values).

defaults
The defaults variable is a tuple of the default values for any keyword
arguments the macro explicitly accepts. Let's change our macro to display the
default values as well as the arguments:

{% macro test(var_a='a string') -%}

{{ test.arguments }}

{{ test.defaults }}

{%- endmacro -%}

{{ test() }}

Rendering this version of the template will result in the following output:

Here, we can see that the template rendered with both the names, and this
time, the default values of the arguments were accepted by the macro.

catch_kwargs
This variable is only defined if the macro itself accesses the kwargs variable to
catch any extra keyword arguments that might have been passed along.
Without accessing the kwargs variable, any extra keyword arguments in a call
to the macro will result in an error when rendering the template. Likewise,
accessing catch_kwargs without also accessing kwargs will result in an undefined
error. Let's modify our example template again so that we can pass along
extra kwargs:

{% macro test() -%}

{{ kwargs }}

{{ test.catch_kwargs }}

{%- endmacro -%}

{{ test(unexpected='surprise') }}

The rendered version of this template will be as follows:

As we can see from this output, the template does not error when an
unexpected variable is passed to it, and instead enabled us to access the
unexpected value(s) that were passed.

catch_varargs
Much like catch_kwargs, this variable exists if the macro accesses the varargs
variable. Modifying our example once more, we can see this in action:

{% macro test() -%}

{{ varargs }}

{{ test.catch_varargs }}

{%- endmacro -%}

{{ test('surprise') }}

The template's rendered result will be as follows:

Again, we can see that we were able to catch and render the unexpected value
that was passed to the macro, rather than returning an error on render, as
would have happened if we hadn't used catch_varargs.

caller
The caller variable takes a bit more explaining. A macro can call out to
another macro. This can be useful if the same chunk of the template will be
used multiple times, but part of the inside changes more than what could
easily be passed as a macro parameter. The caller variable isn't exactly a
variable; it's more of a reference back to the call to get the contents of that
calling macro.

Let's update our template to demonstrate its usage:

{% macro test() -%}

The text from the caller follows: {{ caller() }}

{%- endmacro -%}

{% call test() -%} This is text inside the call {% endcall -%}

The rendered result will be as follows:

A call to a macro can still pass arguments to that macro; any combination of
arguments or keyword arguments can be passed. If the macro utilizes varargs
or kwargs, then extras of those can be passed along as well. Additionally, a
macro can pass arguments back to the caller too! To demonstrate this, let's
create a larger example. This time, our example will generate a file

that's suitable for an Ansible inventory:

{% macro test(group, hosts) -%}

[{{ group }}]

{% for host in hosts -%}

{{ host }} {{ caller(host) }}

{%- endfor -%}

{%- endmacro -%}

{% call(host) test('web', ['host1', 'host2', 'host3']) -%}

ssh_host_name={{ host }}.example.name ansible_sudo=true

{% endcall -%}

{% call(host) test('db', ['db1', 'db2']) %}

ssh_host_name={{ host }}.example.name

{% endcall -%}

Once rendered, the result will be as follows:

We called the test macro twice, once per group we wanted to define. Each
group had a subtly different set of host variables to apply, and those were
defined in the call itself. We saved typing by having the macro call back to
the caller, passing along the host from the current loop.

Control blocks provide programming power inside of templates, allowing

template authors to make their templates efficient. The efficiency isn't
necessarily in the initial draft of the template; instead, the efficiency really
comes into play when a small change to a repeating value is needed.

Data manipulation
While control structures influence the flow of template processing, another
tool exists to modify the contents of a variable. This tool is called a filter.
Filters are the same as small functions, or methods, that can be run on the
variable. Some filters operate without arguments, some take optional
arguments, and some require arguments. Filters can be chained together as
well, where the result of one filter action is fed into the next filter and the
next. Jinja2 comes with many built-in filters, and Ansible extends these with
many custom filters that are available to you when using Jinja2 within
templates, tasks, or any other place Ansible allows templating.

Syntax
A filter is applied to a variable by way of the pipe symbol |, followed by the
name of the filter, and then any arguments for the filter inside parentheses.
There can be a space between the variable name and the pipe symbol, as well
as a space between the pipe symbol and the filter name. For example, if we
wanted to apply the lower filter (which makes all the characters lowercase) to
the my_word variable, we would use the following syntax:

{{ my_word | lower }}

Because the lower filter does not take any arguments, it is not necessary to
attach an empty parentheses set to it. If we use a different filter that requires
arguments, this all changes. Let's use the replace filter, which allows us to
replace all occurrences of a substring with another substring. In this example,
we want to replace all occurrences of the substring no with yes in
the answers variable:

{{ answers | replace('no', 'yes') }}

Applying multiple filters is accomplished by simply adding more pipe
symbols and more filter names. Let's combine both replace and lower to
demonstrate the syntax:

{{ answers | replace('no', 'yes') | lower }}

We can easily demonstrate this with a simple play that uses the debug
command to render the line:

- name: demo the template

 hosts: localhost

 gather_facts: false

 vars:

 answers: "no so YES no"

 tasks:

 - name: debug the template

 debug:

 msg: "{{ answers | replace('no', 'yes') | lower }}"

Now, we can execute the playbook and provide a value for answers at
runtime, as shown in the following code:

As we can see here, our variable has had all instances of the word no replaced
with yes, and the letters are now all lower case.

Useful built-in filters
A full list of the filters that are built into Jinja2 can be found in the Jinja2
documentation. At the time of writing this book, there are over 45 built-in
filters, which is too many to describe here. To get you started, however, we'll
take a look at some of the more commonly used filters.

If you want to look at the list of all available filters, the Jinja2 documentation for the
current version (as available at the time of writing) may be found here: http://jinja.pocoo.org
/docs/2.10/templates/#list-of-builtin-filters.

http://jinja.pocoo.org/docs/2.10/templates/#list-of-builtin-filters

default
The default filter is a way to provide a default value for an otherwise
undefined variable, which will prevent Ansible from generating an error. It is
shorthand for a complex if statement, checking if a variable is defined before
trying to use it with an else clause to provide a different value. Let's look at
two examples that render the same thing. One uses the if/else structure, while
the other uses the default filter:

{% if some_variable is defined -%}

{{ some_variable }}

{% else -%}

default_value

{% endif -%}

{{ some_variable | default('default_value') }}

The rendered result of each of these examples is the same; however, the
example using the default filter is much quicker to write and easier to read.

While default is very useful, proceed with caution if you are using the same
variable in multiple locations. Changing a default value can become a hassle,
and it may be more efficient to define the variable with a default at the play
or role level.

count
The count filter will return the length of a sequence or hash. In fact, length is an
alias of count to accomplish the same thing. This filter can be useful for
performing any sort of math around the size of a set of hosts, or any other
case where the count of some set needs to be known. Let's create an example
where we set a max_threads configuration entry to match the count of hosts in
the play:

max_threads: {{ play_hosts | count }}

This provides us with a nice, concise way of getting the number of hosts
contained within the play_hosts variable, and assigning the answer to the
max_threads variable.

random
The random filter is used to make a random selection from a sequence. Let's use
this filter to delegate a task to a random selection from the db_servers group:

name: backup the database

 shell: mysqldump -u root nova > /data/nova.backup.sql

 delegate_to: "{{ groups['db_servers'] | random }}"

 run_once: true

Here, we can easily delegate this task to a single member of the db_servers
group, picked at random using our filter.

round
The round filter exists to round a number. This can be useful if you need to
perform floating-point math, and then turn the result into a rounded integer.
The round filter takes optional arguments to define a precision (default of 0)
and a rounding method. The possible rounding methods are common (rounds
up or down, and the default), ceil (always round up), and floor (always round
down). In this example, we'll chain two filters together to commonly round a
math result to zero precision, and then turn that into an integer:

{{ math_result | round | int }}

Therefore, if the math_result variable was set to 3.4, the output of the previous
filter chain would be 3.

Useful Ansible provided custom
filters
While there are many filters provided with Jinja2, Ansible includes some
additional filters that playbook authors may find particularly useful. Again,
there are more than we can go into in this book, but we'll outline a few key
ones here.

These custom filters in Ansible change often between releases, and are worth reviewing,
especially if you make heavy use of them. A full list of the custom Ansible filters is
available here: https://docs.ansible.com/ansible/latest/user_guide/playbooks_filters.html.

https://docs.ansible.com/ansible/latest/user_guide/playbooks_filters.html

Filters related to task status
Ansible tracks task data for each task. This data is used to determine if a task
has failed, resulted in a change, or was skipped altogether. Playbook authors
can register the results of a task, and in previous versions of playbooks,
would have used filters to check the tasks' status. This has been deprecated;
however, it deserves a mention here because, while the previous method of
using these filters will still work in Ansible 2.7, support will be removed
completely in 2.9, and so it is important to transition over now.

Previously, you would have used a conditional with a filter like this:

when: derp | success

This should now be written as follows:

when: derp is success

Let's see this in action in an Ansible 2.9 compliant playbook in the following
code:

- name: demo the filters

 hosts: localhost

 gather_facts: false

 tasks:

 - name: fail a task

 debug:

 msg: "I am not a change"

 register: derp

 - name: only do this on change

 debug:

 msg: "You had a change"

 when: derp is changed

 - name: only do this on success

 debug:

 msg: "You had a success"

 when: derp is success

The output is shown in the following screenshot:

As we can see, our debug statement resulted in success, and so we skipped the
task to be run on a change, and executed the one to be run on success.

shuffle
Similar to the random filter, the shuffle filter can be used to produce randomized
results. Unlike the random filter, which selects one random choice from a list,
the shuffle filter will shuffle the items in a sequence and return the full
sequence:

- name: demo the filters

 hosts: localhost

 gather_facts: false

 tasks:

 - name: shuffle the cards

 debug:

 msg: "{{ ['Ace', 'Queen', 'King', 'Deuce'] | shuffle }}"

The output is shown in the following screenshot:

As expected, we see the whole list returned, but with the order shuffled.

Filters dealing with path names
Configuration management and orchestration frequently refer to path names,
but often only part of the path is desired. For example, perhaps we need the
full path to a file but not the filename itself. Or, perhaps we need to extract
just the filename from a full path, ignoring the directories preceding it.
Ansible provides a few filters to help with precisely these tasks, and will be
described in the following sections.

basename
Let's say we have a requirement to work with just the filename from a full
path. Obviously, we could perform some complex pattern matching to do
this, but often this results in code that is not easy to read, and can be difficult
to maintain. Luckily, Ansible provides a filter specifically for extracting the
filename from a full path, as we shall demonstrate. In this example, we will
use the basename filter to extract the filename from a full path:

- name: demo the filters

 hosts: localhost

 gather_facts: false

 tasks:

 - name: demo basename

 debug:

 msg: "{{ '/var/log/nova/nova-api.log' | basename }}"

The output is shown in the following screenshot:

Here, we can see that just the filename was returned from the full path, as
desired.

dirname
The inverse of basename is dirname. Instead of returning the final part of a path,
dirname will return everything, except the final part. Let's change our previous
play to use dirname and rerun it:

We now have just the path of our variable, which could be extremely useful
elsewhere in our playbook.

expanduser
Often, paths to various things are supplied with a user shortcut, such as
~/.stackrc. However, some tasks may require the full path to the file. Rather
than the complicated command and register calls, the expanduser filter provides
a way to expand the path to the full definition. In this example, the username
is jfreeman:

- name: demo the filters

 hosts: localhost

 gather_facts: false

 tasks:

 - name: demo filter

 debug:

 msg: "{{ '~/.stackrc' | expanduser }}"

The output is shown in the following screenshot:

We have successfully expanded the path here, which could be useful for
creating configuration files or performing other file operations that might
need an absolute rather than a relative path name.

Base64 encoding
When reading content from remote hosts, such as with the slurp module (used
to read file content from remote hosts into a variable), the content will be
Base64 encoded. To decode such content, Ansible provides a b64decode filter.
Similarly, if running a task that requires Base64 encoded input, regular
strings can be encoded with the b64encode filter.

Let's read content from the derp file, as shown in the following code:

- name: demo the filters

 hosts: localhost

 gather_facts: false

 tasks:

 - name: read file

 slurp:

 src: derp

 register: derp

 - name: display file content (undecoded)

 debug:

 var: derp.content

 - name: display file content (decoded)

 debug:

 var: derp.content | b64decode

The output is shown in the following screenshot:

Here, we can see that we successfully read the small file we created into a
variable's, and that we can see the variable contents in the Base64 encoded
form (remember that this encoding was performed by the slurp module). We
can then decode it using a filter to see the original file contents.

Searching for content
It is relatively common in Ansible to search a string for a substring. In
particular, the common administrator task of running a command and
grepping the output for a particular key piece of data is a reoccurring
construct in many playbooks. While it's possible to replicate this with a shell
task to execute a command, and pipe the output into grep, and use careful
handling of failed_when to catch grep exit codes, a far better strategy is to use a
command task, register the output, and then utilize the Ansible provided
regex filters in later conditionals.

Let's look at two examples: one using the shell, pipe, grep method, and
another using the search test:

- name: check database version

 shell: neutron-manage current | grep juno

 register: neutron_db_ver

 failed_when: false

- name: upgrade db

 command: neutron-manage db_sync

 when: neutron_db_ver | failed

The preceding example works by forcing Ansible to always see the task as
successful, but assumes that if the exit code from the shell is non-zero, then
the string juno was not found in the output of the neutron-manage command.
This construct is functional but complex to read, and could mask real errors
from the command. Let's try again using the search test.

As we stated previously regarding task status, using search on a string in
Ansible is considered as a test, and is deprecated. Although it might read
slightly odd, to be compliant with Ansible 2.9 and later versions, we must use
the keyword is in place of the pipe when using search in this context:

- name: check database version

 command: neutron-manage current

 register: neutron_db_ver

- name: upgrade db

 command: neutron-manage db_sync

 when: not neutron_db_ver.stdout is search('juno')

What we are saying here is, run the task named upgrade db
when neutron_db_ver.stdout does not contain the string juno. Once you get used
to the concept of when: not ... is, you can see that this version is much cleaner
to follow and does not mask errors from the first task.

The search filter searches a string and will return True if the substring is found
anywhere within the input string. If an exact complete match is desired
instead, the match filter can be used. Full Python regex syntax can be utilized
inside the search/match string.

Omitting undefined arguments
The omit variable takes a bit of explaining. Sometimes, when iterating over a
hash of data to construct task arguments, it may be necessary to only provide
some arguments for some of the items in the hash. Even though Jinja2
supports in-line if statements to conditionally render parts of a line, this does
not work well in an Ansible task. Traditionally, playbook authors would
create multiple tasks, one for each set of potential arguments passed in, and
use conditionals to sort the loop members between each task set. A recently
added magic variable named omit solves this problem when used in
conjunction with the default filter. The omit variable will remove the argument
the variable was used with altogether.

To illustrate how this works, let's consider a scenario where we need to install
a set of Python packages with pip. Some of the packages have a specific
version, while others do not. These packages are in a list of hashes named
pips. Each hash has a name key and potentially a ver key. Our first example
utilizes two different tasks to complete the installs:

- name: install pips with versions

 pip: name={{ item.name }} version={{ item.ver }}

 with_items: pips

 when: item.ver is defined

- name: install pips without versions

 pip: name={{ item.name }}

 with_items: pips

 when: item.ver is undefined

This construct works, but the loop is iterated twice, and some of the iterations
will be skipped in each task. The following example collapses the two tasks
into one, and utilizes the omit variable:

- name: install pips

 pip: name={{ item.name }} version={{ item.ver | default(omit) }}

 with_items: pips

This example is shorter, cleaner, and doesn't generate extra skipped tasks.

Python object methods
Jinja2 is a Python-based template engine, and so Python object methods are
available within templates. Object methods are methods, or functions, which
are directly accessible by the variable object (typically a string, list, int, or
float). A good way to think about this is as follows: if you were writing
Python code and could write the variable, then a period, then a method call,
then you would have access to do the same in Jinja2. Within Ansible, only
methods that return modified content or a Boolean are typically used. Let's
explore some common object methods that might be useful in Ansible.

String methods
String methods can be used to return new strings or a list of strings that have
been modified in some way or to test the string for various conditions and
return a Boolean. Some useful methods are as follows:

endswith: Determines if the string ends with a substring
startswith: Same as endswith, but from the start
split: Splits the string on characters (default is space) into a list of
substrings
rsplit: The same as split, but starts from the end of the string and works
backwards
splitlines: Splits the string at newlines into a list of substrings
upper: Returns a copy of the string all in uppercase
lower: Returns a copy of the string all in lowercase
capitalize: Returns a copy of the string with just the first character in
uppercase

We can create a simple playbook that will utilize some of these methods in a
single task:

- name: demo the filters

 hosts: localhost

 gather_facts: false

 tasks:

 - name: string methods

 debug:

 msg: "{{ 'foo bar baz'.upper().split() }}"

The output is shown in the following screenshot:

As these are object methods, we need to access them with dot notation, rather
than with a filter via |.

List methods
Most of the methods Ansible provides relating to lists perform modifications
on the list itself. However, there are two list methods that are useful when
working with lists, especially when loops become involved. These two
functions are index and count, and their functionality is described as follows:

index: Returns the first index position of a provided value
count: Counts the items in the list

These can be incredibly useful when iterating through a list in a loop, as it
allows positional logic to be performed and appropriate actions to be taken,
given our position in the list as we work through it. This is common in other
programming languages, and fortunately, Ansible also provides this.

int and float methods
Most int and float methods are not useful for Ansible. Sometimes, our
variables are not exactly in the format we want them in. However, instead of
defining more and more variables that slightly modify the same content, we
can make use of Jinja2 filters to do the manipulation for us in the various
places that require that modification. This allows us to stay efficient with the
definition of our data, preventing many duplicate variables and tasks that may
have to be changed later.

Comparing values
Comparisons are used in many places with Ansible. Task conditionals are
comparisons. Jinja2 control structures such as if/elif/else blocks, for loops,
and macros often use comparisons; some filters use comparisons as well. To
master Ansible's usage of Jinja2, it is important to understand what
comparisons are available.

Comparisons
Like most languages, Jinja2 comes equipped with the standard set of
comparison expressions you would expect, which will render a Boolean true
or false.

The expressions in Jinja2 are as follows:

Expression Definition
== True if two objects are equal
!= True if two objects are not equal
> True if the left-hand side is greater than the right-hand side
< True if the left-hand side is less than the right- hand side

>=
True if the left-hand side is greater than, or equal to the
right-hand side

<=
True if the left-hand side is less than, or equal to the right-
hand side

If you have written comparison operations in almost any other programming
language (usually in the form of an if statement), these should all seem very
familiar. Jinja2 maintains this functionality in templates, allowing for the
same powerful comparison operations you would expect in conditional logic
from any good programming language.

Logic
Sometimes, performing a single comparison operation on its own is not
enough—perhaps we might want to perform an action if two comparisons
evaluate to true at the same time. Alternatively, we might want to perform an
operation only if a comparison is not true. Logic in Jinja2 helps group two or
more comparisons together, allowing for the formation of complex conditions
from simple comparisons. Each comparison is referred to as an operand, and
the logic that's used to bind these together into complex conditionals is given
in the following list:

and: Returns true if the left and the right operand are true
or: Returns true if the left or the right operand is true
not: Negates an operand
(): Wraps a set of operands together to form a larger operand

Tests
A test in Jinja2 is used to see if a variable matches certain well-defined
criteria, and we have come across this already in this chapter in certain
specific scenarios. The is operator is used to initiate a test. Tests are used any
place a Boolean result is desired, such as with if expressions and task
conditionals. There are many built-in tests, but we'll highlight a few of the
particularly useful ones, as follows:

defined: Returns true if the variable is defined
undefined: The opposite of defined
none: Returns true if the variable is defined, but the value is none
even: Returns true if the number is divisible by 2
odd: Returns true if the number is not divisible by 2

To test whether a value is not something, simply use is not.

We can create a playbook to demonstrate some of these value comparisons:

- name: demo the logic

 hosts: localhost

 gather_facts: false

 vars:

 num1: 10

 num3: 10

 tasks:

 - name: logic and comparison

 debug:

 msg: "Can you read me?"

 when: num1 >= num3 and num1 is even and num2 is not defined

The output is shown in the following screenshot:

Here, we can see that our complex conditional evaluated as true, and so the
debug task was executed.

Summary
Jinja2 is a powerful language that is used extensively by Ansible. Not only is
it used to generate file content, it is also used to make portions of a playbook
dynamic. Mastering Jinja2 is vital to creating and maintaining elegant and
efficient playbooks and roles.

In this chapter, we learned how to build simple templates with Jinja2 and
render them from an Ansible playbook. We learned how to make effective
use of control structures, to manipulate data, and even perform comparisons
and tests on variables to both control the flow of Ansible playbooks (keeping
the code lightweight and efficient) and create and manipulate data without the
need for duplicate definitions, or excessive numbers of variables.

In the next chapter, we will explore Ansible's capability in more depth to
define what constitutes a change or failure for tasks within a play.

Controlling Task Conditions
Ansible is a system for running tasks on one or more hosts, and ensuring that
operators understand whether changes have occurred (and indeed whether
any issues were encountered). As a result, Ansible tasks result in one of four
possible statuses: ok, changed, failed, or skipped. These statuses perform a
number of important functions.

From the perspective of an operator running an Ansible playbook, they
provide oversight of the Ansible run that completed—whether anything
changed or not, and whether there were any failures that need addressing. In
addition, they determine the flow of the playbook—for example, if a task
results in a changed status, a handler might be triggered in the playbook.

Similarly, if a task results in a failed status, the default behavior of Ansible is
not to attempt any further tasks on that host. Tasks can also make use of
conditionals that check the status of previous tasks to control operations. As a
result, these statuses, or task conditions, are central to just about everything
Ansible does, and it is important to understand how to work with them and
hence control the flow of a playbook—especially, for example, in a failure
condition.

In this chapter, we'll explore this in detail, focusing specifically on the
following topics:

Controlling what defines a failure
Recovering gracefully from a failure
Controlling what defines a change
Iterating over a set of tasks using loops

Technical requirements
Check out the following video to see the Code in Action:

http://bit.ly/2TUkO03

http://bit.ly/2TUkO03

Defining a failure
Most modules that ship with Ansible have differing criteria for what
constitutes an error. An error condition is highly dependent upon the module
and what the module is attempting to accomplish. When a module returns an
error, the host will be removed from the set of available hosts, preventing any
further tasks or handlers from being executed on that host. Furthermore, the
ansible-playbook binary (or other Ansible executable) will exit with a nonzero
exit code to indicate failure. However, we are not limited by a module's
opinion of what an error is. We can ignore errors or redefine an error
condition.

Ignoring errors
A task condition, named ignore_errors, is used to ignore errors. This condition
is a Boolean, meaning that the value should be something Ansible
understands to be true, such as yes, on, true, or 1 (string or integer).

To demonstrate how to use ignore_errors, let's create a playbook where we
attempt to query a web server that doesn't exist. Typically, this would be an
error, and if we don't define ignore_errors, we get the default behavior, that is,
the host will be marked as failed and no further tasks will be attempted on
that host. Create a new playbook called error.yaml as follows to look further at
this behavior:

- name: error handling

 hosts: localhost

 gather_facts: false

 tasks:

 - name: broken website

 uri:

 url: http://notahost.nodomain

Running the task as is will give us the following error:

Now, let's imagine that we didn't want Ansible to stop here, and instead we
wanted it to continue. We can add the ignore_errors condition to our task like
this:

 - name: broken website

 uri:

 url: http://notahost.nodomain

 ignore_errors: true

This time, when we run the playbook, our error will be ignored, as we can see
here:

Any further tasks for that host will still be attempted and the playbook does
not register any failed hosts.

Defining an error condition
The ignore_errors condition is a bit of a blunt instrument. Any error generated
from the module used by the task will be ignored. Furthermore, the output, at
first glance, still appears like an error, and may be confusing to an operator
attempting to discover a real failure. A more subtle tool is the failed_when
condition. This condition is more like a fine scalpel, allowing a playbook
author to be very specific as to what constitutes an error for a task. This
condition performs a test to generate a Boolean result, much like the when
condition. If the condition results in a Boolean true, the task will be
considered a failure. Otherwise, the task will be considered successful.

The failed_when condition is quite useful when used in combination with the
command or shell module and registering the result of the execution. Many
programs that are executed can have detailed nonzero exit codes that mean
different things. However, these Ansible modules all consider an exit code of
anything other than 0 to be a failure. Let's look at the iscsiadm utility. This
utility can be used for many things related to iSCSI. For the sake of a
demonstration, we'll replace our uri module in error.yaml and attempt to
discover any active iscsi sessions:

 - name: query sessions

 command: /sbin/iscsiadm -m session

 register: sessions

If this were to be run on a system where there were no active sessions, we'd
see output like this:

The iscsiadm tool may not be installed by default, in which case you will get a different
error to the preceding one. On our CentOS 7 test machine, it was installed using the
following command: sudo yum install iscsi-initiator-utils.

We can just use the ignore_errors condition, but that would mask other
problems with iscsi, so instead of this, we want to instruct Ansible that an
exit code of 21 is acceptable. To that end, we can make use of the registered
variable to access the rc variable, which holds the return code. We'll make use
of this in a failed_when statement:

 - name: query sessions

 command: /sbin/iscsiadm -m session

 register: sessions

 failed_when: sessions.rc not in (0, 21)

We simply stated that any exit code other than 0 or 21 should be considered a
failure. Let's see the new output after this modification:

The output now shows no error, and, in fact, we see a new data key in the
results—failed_when_result. This shows whether our failed_when statement
rendered true or false; it was false in this case.

Many command-line tools do not have detailed exit codes. In fact, most
typically use 0 for success and one other nonzero code for all failure types.
Thankfully, the failed_when statement is not just limited to the exit code of the
application; it is a free-form Boolean statement that can access any sort of
data required. Let's look at a different problem, one involving git. We'll
imagine a scenario where we want to ensure that a particular branch does not
exist in a git checkout. This task assumes a git repository checked out in the
/srv/app directory. The command to delete a git branch is git branch -D. Let's
have a look at the following code snippet:

 - name: delete branch bad

 command: git branch -D badfeature

 args:

 chdir: /srv/app

The command and shell modules use a different format for providing module arguments. The
command itself is provided in free form, while module arguments go into an args hash.

If we start with just this command, we'll get an error, an exit code of 1, if the
branch does not exist:

As you can see, the error was not handled gracefully, and the play for
localhost has been aborted.

We're using the command module to easily demonstrate our topic despite the existence of the
git module. When dealing with Git repositories, the git module should be used instead.

Without the failed_when and changed_when conditions, we would have to create a
two-step task combo to protect ourselves from errors:

 - name: check if branch badfeature exists

 command: git branch

 args:

 chdir: /srv/app

 register: branches

 - name: delete branch bad

 command: git branch -D badfeature

 args:

 chdir: /srv/app

 when: branches.stdout is search('badfeature')

In the scenario where the branch doesn't exist, running these tasks looks as
follows:

While the task set is functional, it is not efficient. Let's improve upon this and
leverage the failed_when functionality to reduce the two tasks to one:

 - name: delete branch bad

 command: git branch -D badfeature

 args:

 chdir: /srv/app

 register: gitout

 failed_when:

 - gitout.rc != 0

 - not gitout.stderr is search('branch.*not found')

Multiple conditions that would normally be joined with and can instead be expressed as
list elements. This can make playbooks easier to read and logic issues easier to find.

We check the command return code for anything other than 0 and then use the
search filter to search the stderr value with a regex branch.*not found. We use
the Jinja2 logic to combine the two conditions, which will evaluate to an
inclusive true or false option:

This demonstrates how we can redefine failure in an Ansible playbook, and
gracefully handle conditions that would otherwise disrupt a play. We can also
redefine what Ansible sees as a change, and we will look at this next.

Defining a change
Similar to defining a task failure, it is also possible to define what constitutes
a changed task result. This capability is particularly useful with the command
family of modules (command, shell, raw, and script). Unlike most other modules,
the modules of this family do not have an inherent idea of what a change may
be. In fact, unless otherwise directed, these modules only result in failed,
changed, or skipped. There is simply no way for these modules to assume a
changed condition versus unchanged.

The changed_when condition allows a playbook author to instruct a module on
how to interpret a change. Just like failed_when, changed_when performs a test to
generate a Boolean result. Frequently, the tasks used with changed_when are
commands that will exit nonzero to indicate that no work is needed to be
done, so, often, authors will combine changed_when and failed_when to fine-tune
the task result evaluation.

In our previous example, the failed_when condition caught the case where there
was no work to be done but the task still showed a change. We want to
register a change on the exit code 0, but not on any other exit code. Let's
expand our example task to accomplish this:

 - name: delete branch bad

 command: git branch -D badfeature

 args:

 chdir: /srv/app

 register: gitout

 failed_when:

 - gitout.rc != 0

 - not gitout.stderr is search('branch.*not found')

 changed_when: gitout.rc == 0

Now, if we run our task when the branch still does not exist, we'll see the
following output:

Note how the changed key now has the value false.

Just for the sake of completeness, we'll change the scenario so that the branch
does exist and run it again. To create the branch, simply run git branch
badfeature from the /srv/app directory. Now, we can execute our playbook once
again to see the output, which is as follows:

This time, our output is different; it's registering a change, and the stdout data
shows the branch being deleted.

Special handling of the command
family
A subset of the command family of modules (command, shell, and script) has a
pair of special arguments that will influence whether the task work has
already been done, and thus, whether or not a task will result in a change. The
options are creates and removes. These two arguments expect a file path as a
value. When Ansible attempts to execute a task with the creates or removes
arguments, it will first check whether the referenced file path exists.

If the path exists and the creates argument was used, Ansible will consider
that the work has already been completed and will return ok. Conversely, if
the path does not exist and the removes argument is used, then Ansible will
again consider the work to be complete, and it will return ok. Any other
combination will cause the work to actually happen. The expectation is that
whatever work the task is doing will result in either the creation or removal of
the file that is referenced.

The convenience of creates and removes saves developers from having to do a
two-task combo. Let's create a scenario where we want to run the script
frobitz from the files/ subdirectory of our project root. In our scenario, we
know that the frobitz script will create a path, /srv/whiskey/tango. In fact, the
source of frobitz is the following:

#!/bin/bash

rm -rf /srv/whiskey/tango

mkdir -p /srv/whiskey/tango

We don't want this script to run twice as it can be destructive to any existing
data. Replacing the existing tasks in our error.yaml playbook, the two-task
combo will look like this:

 - name: discover tango directory

 stat: path=/srv/whiskey/tango

 register: tango

 - name: run frobitz

 script: files/frobitz --initialize /srv/whiskey/tango

 when: not tango.stat.exists

Assuming that the file already exists, the output will be as follows:

If the /srv/whiskey/tango path did not exist, the stat module would have returned
far less data, and the exists key would have a value of false. Thus, our frobitz
script would have been run.

Now, we'll use creates to reduce this down to a single task:

 - name: run frobitz

 script: files/frobitz

 args:

 creates: /srv/whiskey/tango

The script module is actually an action_plugin, which will be discussed in Chapter 9,
Extending Ansible.

This time, our output will be slightly different:

On this occasion, we simply skipped running the script altogether as the
directory already existed before the playbook was even run. This saves time
during the playbook execution and also prevents any potentially destructive
actions that might occur from running a script.

Making good use of creates and removes will keep your playbooks concise and efficient.

Suppressing a change
Sometimes, it can be desirable to completely suppress changes. This is often
used when executing a command in order to gather data. The command
execution isn't actually changing anything; instead, it's just gathering info,
like the setup module. Suppressing changes on such tasks can be helpful for
quickly determining whether a playbook run resulted in any actual change in
the fleet.

To suppress change, simply use false as an argument to the changed_when task
key. Let's extend one of our previous examples to discover the active iscsi
sessions to suppress changes:

 - name: discover iscsi sessions

 command: /sbin/iscsiadm -m session

 register: sessions

 failed_when:

 - sessions.rc != 0

 - not sessions.stderr is

 search('No active sessions')

 changed_when: false

Now, no matter what comes in the return data, Ansible will treat the task as ok
rather than changed:

Thus, there are only two possible states to this task now—failed and ok. We
have actually negated the possibility of a changed task result.

Error recovery
While error conditions can be narrowly defined, there will be times when real
errors happen. Ansible provides a method to react to true errors, a method
that allows running additional tasks when an error occurs, defining specific
tasks that always execute even if there was an error, or even both. This
method is the blocks feature.

The blocks feature, introduced with Ansible version 2.0, provides some
additional structure to play task listings. Blocks can group tasks together into
a logical unit, which can have task controls applied to the unit as a whole. In
addition, a block of tasks can have optional rescue and always sections.

Using the rescue section
The rescue section of a block defines a logical unit of tasks that will be
executed should an actual failure be encountered within a block. As Ansible
performs the tasks within a block, from top to bottom, when an actual failure
is encountered, execution will jump to the first task of the rescue section of the
block if it exists. Then, tasks are performed from top to bottom until either the
end of the rescue section is reached, or another error is encountered.

After the rescue section completes, task execution continues with whatever
comes after the block, as if there were no errors. This provides a way to
gracefully handle errors, allowing cleanup tasks to be defined so that a system
is not left in a completely broken state, and the rest of a play can continue.
This is far cleaner than a complex set of task-registered results and task
conditionals based on error status.

To demonstrate this, let's create a new task set inside a block. This task set will
have an unhandled error in it that will cause execution to switch to the rescue
section, where we'll perform a cleanup task.

We'll also provide a task after the block to ensure execution continues. We'll
reuse the error.yaml playbook:

- name: error handling

 hosts: localhost

 gather_facts: false

 tasks:

 - block:

 - name: delete branch bad

 command: git branch -D badfeature

 args:

 chdir: /srv/app

 - name: this task is lost

 debug:

 msg: "I do not get seen"

The two tasks listed in the block section are executed in the order in which

they are listed. Should one of them result in a failed result, the following code
shown in the rescue block will be executed:

 rescue:

 - name: cleanup task

 debug:

 msg: "I am cleaning up"

 - name: cleanup task 2

 debug:

 msg: "I am also cleaning up"

Finally, this task is executed regardless of the earlier tasks. Note how the
lower indentation level means it gets run at the same level as the block, rather
than as part of the block structure:

 - name: task after block

 debug:

 msg: "Execution goes on"

When this play executes, the first task will result in an error, and the second
task will be passed over. Execution continues with the cleanup tasks, as we can
see in this screenshot:

Not only was the rescue section executed, but the rest of the play completed as
well, and the whole ansible-playbook execution was considered successful.

Using the always section
In addition to rescue, we can also use another section, named always. This
section of a block will always be executed irrespective of whether there were
errors. This feature is handy for ensuring that the state of a system is always
left functional, irrespective of whether a block of tasks was successful. As
some tasks of a block may be skipped due to an error, and a rescue section is
only executed when there is an error, the always section provides the guarantee
of task execution in every instance.

Let's extend our previous example and add an always section to our block:

 always:

 - name: most important task

 debug:

 msg: "Never going to let you down"

Rerunning our playbook, we see the additional task displayed:

To verify that the always section does indeed always execute, we can alter the
play so that the Git task is considered successful. The first part of this
modified playbook is shown in the following snippet:

- name: error handling

 hosts: localhost

 gather_facts: false

 tasks:

 - block:

 - name: delete branch bad

 command: git branch -D badfeature

 args:

 chdir: /srv/app

 register: gitout

 failed_when:

 - gitout.rc != 0

 - not gitout.stderr is search('branch.*not found')

Note the changed failed_when condition, which will enable the git command to
run without being considered a failure. The rest of the playbook (which
should, by now, have been built up in the previous examples) remains
unchanged.

This time, when we execute the playbook, our rescue section is skipped over,
our previously masked-by-error task is executed, and our always block is still
executed:

Note also that our previously lost task is now executed, as the failure
condition for the delete branch bad task was changed such that it no longer fails
in this play. In a similar manner, our rescue section is no longer needed, and
all other tasks (including the always section) complete as expected.

Handling unreliable environments
So far in this chapter, we have focused on gracefully handling errors, and
changing the default behavior of Ansible with respect to changes and failures.
This is all well and good for tasks, but what about if you are running Ansible
in an unreliable environment? For example, poor or transient connectivity
might used to reach the managed hosts, or hosts might be down on a regular
basis for some reason. The latter example might be a dynamically scaled
environment that could be scaled up in times of high load and scaled back
when demand is low to save on resources.

Luckily, a new playbook keyword, ignore_unreachable, was introduced that
handles exactly these cases, and ensures that all tasks are attempted on our
inventory even for hosts that get marked as unreachable during the execution
of a task. This is best explained by means of an example, so let's reuse the
error.yaml playbook to create such a case:

- name: error handling

 hosts: all

 gather_facts: false

 tasks:

 - name: delete branch bad

 command: git branch -D badfeature

 args:

 chdir: /srv/app

 - name: important task

 debug:

 msg: It is important we attempt this task!

We are going to try to delete the badfeature branch from a Git repository on
two remote hosts as defined in our inventory. These hosts do not exist, of
course; they are fictitious, and so we know they will get marked as unreachable
as soon as the first task is attempted. In spite of this, there is a second task
that absolutely must be attempted if at all possible. Let's run the playbook as
it is and see what happens:

Note that important task was never attempted—the play was aborted after the
first task since the hosts were unreachable. However, let's use our newly
discovered flag to change this behavior. Change the code so that it looks like
the code here:

- name: error handling

 hosts: all

 gather_facts: false

 tasks:

 - name: delete branch bad

 command: git branch -D badfeature

 args:

 chdir: /srv/app

 ignore_unreachable: true

 - name: important task

 debug:

 msg: It is important we attempt this task!

This time, note that even though the hosts were unreachable on the first
attempt, our second task is still executed:

This is useful if, like the debug command, it might run locally, or perhaps it is
vital and should be attempted even if connectivity was down on the first
attempt. So far in this chapter, you have learned about the tools Ansible
provides to handle a variety of error conditions with grace. Next, we will
proceed to look at controlling the flow of tasks using loops—an especially
important tool for making code concise and preventing repetition.

Iterative tasks with loops
Loops deserve a special mention in this chapter. So far, we have focused on
controlling the flow of a playbook in a top-to-bottom fashion—we have
changed the various conditions that might be evaluated as the playbook runs,
and we have also focused on creating concise efficient code. What happens,
however, if you have a single task, but need to run it against a list of data; for
example, creating several user accounts, or directories, or indeed something
more complex.

Looping changed in Ansible 2.5—prior to this, loops were generally created
with keywords such as with_items. Although some backward compatibility
remains, it is advisable to move to the newer loop keyword instead.

Let's take a simple example—we need to create two directories. Create
loop.yaml as follows:

- name: looping demo

 hosts: localhost

 gather_facts: false

 tasks:

 - name: create a directory

 file:

 path: /srv/whiskey/alpha

 state: directory

 - name: create another directory

 file:

 path: /srv/whiskey/beta

 state: directory

When we run this, as expected, our two directories get created:

However, you can see this code is repetitive and inefficient. Instead, we could
change it to something like this:

- name: looping demo

 hosts: localhost

 gather_facts: false

 tasks:

 - name: create a directory

 file:

 path: "{{ item }}"

 state: directory

 loop:

 - /srv/whiskey/alpha

 - /srv/whiskey/beta

Note the use of the special variable item, which is now used to define the path
from the loop items at the bottom of the task. Now, when we run this code, the
output looks somewhat different:

The two directories were still created exactly as before, but this time within a
single task. This makes our playbooks much more concise and efficient.
Ansible offers many more powerful looping options, including nested loops
and the ability to create loops that will carry on until a given criterion is met
(often referred to as do until loops), as opposed to a specific limited set of
data. Full details of these are available in the Ansible documentation here: htt
ps://docs.ansible.com/ansible/latest/user_guide/playbooks_loops.html.

https://docs.ansible.com/ansible/latest/user_guide/playbooks_loops.html

Summary
In this chapter, you learned that it is possible to define specifically how
Ansible perceives a failure or a change when a specific task is run, how to
use blocks to gracefully handle errors and perform cleanup, and how to write
tight efficient code using loops.

As a result, you should now be able to alter any given task to provide specific
conditions under which Ansible will fail it or consider a change successful.
This is incredibly valuable when running shell commands, as we have
demonstrated in this chapter, and also serves when defining specialized use
cases for existing modules. You should also now be able to organize your
Ansible tasks into blocks, ensuring that if failures do occur, recovery actions
can be taken that would otherwise not need to be run. Finally, you should
now be able to write tight, efficient Ansible playbooks using loops, removing
the need for repetitive code and lengthy inefficient playbooks.

In the next chapter, we'll explore the use of roles for organizing tasks, files,
variables, and other content.

Composing Reusable Ansible
Content with Roles
For many projects, a simple, single Ansible playbook may suffice. As time
goes on and projects grow, additional playbooks and variable files are added,
and task files may be split. Other projects within an organization may want to
reuse some of the content, and either the projects get added to the directory
tree or the desired content may get copied among multiple projects. As the
complexity and size of the scenario grows, something more than a loosely
organized handful of playbooks, task files, and variable files is highly
desired. Creating such a hierarchy can be daunting and may explain why
many Ansible implementations start off simple and only become more
organized once the scattered files become unwieldy and a hassle to maintain.
Making the migration can be difficult and may require rewriting significant
portions of playbooks, which can further delay reorganization efforts.

In this chapter, we will cover the best practices for composable, reusable, and
well-organized content within Ansible. Lessons learned in this chapter will
help developers design Ansible content that grows well with the project,
avoiding the need for difficult redesign work later. The following is an
outline of what we will cover:

Task, handler, variable, and playbook inclusion concepts
Roles (structures, defaults, and dependencies)
Designing top-level playbooks to utilize roles
Sharing roles across projects (dependencies via Galaxy; Git-like repos)

Technical requirements
Check out the following video to see the Code in Action:

http://bit.ly/2HKOvtS

http://bit.ly/2HKOvtS

Task, handler, variable, and
playbook inclusion concepts
The first step to understanding how to efficiently organize an Ansible project
structure is to master the concept of including files. The act of including files
allows content to be defined in a topic-specific file that can be included into
other files one or more times within a project. This inclusion feature supports
the concept of Don't Repeat Yourself (DRY).

Including tasks
Task files are YAML files that define one or more tasks. These tasks are not
directly tied to any particular play or playbook; they exist purely as a list of
tasks. These files can be referenced by playbooks or other task files by way
of the include operator. This operator takes a path to a task file, and as we
learned in Chapter 1, The System Architecture and Design of Ansible, the path
can be relative to the file referencing it.

To demonstrate how to use the include operator to include tasks, let's create a
simple play that includes a task file with some debug tasks within it. First,
let's write our playbook file, and we'll call it includer.yaml:

- name: task inclusion

 hosts: localhost

 gather_facts: false

 tasks:

 - name: non-included task

 debug:

 msg: "I am not included"

 - include: more-tasks.yaml

Next, we'll create more-tasks.yaml in the same directory that holds includer.yaml:

- name: included task 1

 debug:

 msg: "I am the first included task"

- name: included task 2

 debug:

 msg: "I am the second included task"

Now we can execute our playbook to observe the output:

We can clearly see our tasks from the include file execution. Because the
include operator was used within the play's tasks section, the included tasks
were executed within that play. In fact, if we were to add a task to the play
after the include operator, we would see that the order of execution follows as
if all the tasks from the included file existed at the spot the include operator
was used:

 tasks:

 - name: non-included task

 debug:

 msg: "I am not included"

 - include: more-tasks.yaml

 - name: after-included tasks

 debug:

 msg: "I run last"

If we run our modified playbook, we will see the task order we expect:

By breaking these tasks into their own file, we could include them multiple
times or in multiple playbooks. If we ever have to alter one of the tasks, we
only have to alter a single file, no matter how many places this file gets
referenced.

Passing variable values to included
tasks
Sometimes, we want to split out a set of tasks but have those tasks act slightly
differently depending on variable data. The include operator allows us to
define and override variable data at the time of inclusion. The scope of the
definition is only within the included task file (and any other files that file
may itself include).

To illustrate this capability, let's create a new scenario in which we need to
touch a couple of files, each in their own directory path. Instead of writing
two file tasks for each file (one to create the directory and another to touch
the file), we'll create a task file with each task that will use variable names in
the tasks. Then, we'll include the task file twice, each time passing different
data in. First, we'll do this with the files.yaml task file:

- name: create leading path

 file:

 path: "{{ path }}"

 state: directory

- name: touch the file

 file:

 path: "{{ path + '/' + file }}"

 state: touch

Next, we'll modify our includer.yaml playbook to include the task file we've
just created, passing along variable data for the path and file variables:

- name: touch files

 hosts: localhost

 gather_facts: false

 tasks:

 - include: files.yaml

 vars:

 path: /tmp/foo

 file: herp

 - include: files.yaml

 vars:

 path: /tmp/foo

 file: derp

Variable definitions provided when including files can either be in the inline format of
key=value or in the illustrated YAML format of key: value inside a vars hash.

When we run this playbook, we'll see four tasks get executed: the two tasks
from within files.yaml twice. The second set should result in only one change,
as the path is the same for both sets:

As can be seen here, the code to create the leading path and the file is being
reused, just with different values each time, making our code really efficient
to maintain.

Passing complex data to included
tasks
When wanting to pass complex data to included tasks, such as a list or hash,
an alternative syntax can be used when including the file. Let's repeat the last
scenario, only this time instead of including the task file twice, we'll include
it once and pass a hash of the paths and files in. First, we'll recreate the
files.yaml file:

- name: create leading path

 file:

 path: "{{ item.value.path }}"

 state: directory

 with_dict: "{{ files }}"

- name: touch the file

 file:

 path: "{{ item.value.path + '/' + item.key }}"

 state: touch

 with_dict: "{{ files }}"

Now we'll alter our includer.yaml playbook to provide the files hash in a single
include statement:

- name: touch files

 hosts: localhost

 gather_facts: false

 tasks:

 - include: files.yaml

 vars:

 files:

 herp:

 path: /tmp/foo

 derp:

 path: /tmp/foo

If we run this new playbook and task file, we should see similar but slightly
different output, the end result of which is the /tmp/foo directory already in
place and the two herp and derp files being created as empty files (touched)
within:

Using this manner of passing in a hash of data allows for the growth of the
set of things created without having to grow the number of include statements
in the main playbook.

Conditional task includes
Similar to passing data into included files, conditionals can also be passed
into included files. This is accomplished by attaching a when statement to the
include operator. This conditional does not cause Ansible to evaluate the test
to determine whether the file should be included; rather, it instructs Ansible
to add the conditional to each and every task within the included file (and any
other files the said file may include).

It is not possible to conditionally include a file. Files will always be included; however, a
task conditional can be applied to every task within.

Let's demonstrate this by modifying our first example that includes simple
debug statements. We'll add a conditional and pass along some data for the
conditional to use. First, let's modify the includer.yaml playbook:

- name: task inclusion

 hosts: localhost

 gather_facts: false

 tasks:

 - include: more-tasks.yaml

 when: item | bool

 vars:

 a_list:

 - true

 - false

Next, let's modify more-tasks.yaml to loop over the a_list variable in each task:

- name: included task 1

 debug:

 msg: "I am the first included task"

 with_items: "{{ a_list }}"

- name: include task 2

 debug:

 msg: "I am the second included task"

 with_items: "{{ a_list }}"

Now let's run the playbook and see our new output:

We can see a skipped iteration per task, the iteration where the item evaluated
to a Boolean false. It's important to remember that all hosts will evaluate all
included tasks. There is no way to influence Ansible to not include a file for a
subset of hosts. At most, a conditional can be applied to every task within an
include hierarchy so that included tasks may be skipped. One method to
include tasks based on host facts is to utilize the group_by action plugin to
create dynamic groups based on host facts. Then, you can give the groups
their own plays to include specific tasks. This is an exercise left up to the
reader.

Tagging included tasks
When including task files, it is possible to tag all the tasks within the file. The
tags key is used to define one or more tags to apply to all the tasks within the
include hierarchy. The ability to tag at include time can keep the task file itself
un-opinionated about how the tasks should be tagged and can allow for a set
of tasks to be included multiple times but with different data and tags passed
along.

Tags can be defined at the include statement or at the play itself to cover all includes (and
other tasks) in a given play.

Let's create a simple demonstration to illustrate how tags can be used. We'll
start by editing our includer.yaml file to create a playbook that includes a task
file twice, each with a different tag name and different variable data:

- name: task inclusion

 hosts: localhost

 gather_facts: false

 tasks:

 - include: more-tasks.yaml

 vars:

 data: first

 tags: first

 - include: more-tasks.yaml

 vars:

 data: second

 tags: second

Now we'll update more-tasks.yaml to do something with the data being
provided:

- name: included task

 debug:

 msg: "My data is {{ data }}"

If we run this playbook without selecting tags, we'll see this task run twice:

Now if we select which tag to run, say, the second tag, by altering our ansible-
playbook arguments, we should see only that occurrence of the included task
being run:

Our example used the --tags command-line argument to indicate which
tagged tasks to run. A different argument, --skip-tags, allows the expressing of
the opposite, which tagged tasks to not run.

Task includes with loops
Task inclusions can be combined with loops as well. When adding a
loop instance to a task inclusion (or a with_ loop if using a version of Ansible
earlier than 2.5), the tasks inside the file will be executed with the item
variable, which holds the place of the current loop's value. The entire include
file will be executed repeatedly until the loop runs out of items. Let's update
our example play to demonstrate this:

- name: task inclusion

 hosts: localhost

 gather_facts: false

 tasks:

 - include: more-tasks.yaml

 loop:

 - one

 - two

We also need to update our more-tasks.yaml file to make use of the loop item:

- name: included task 1

 debug:

 msg: "I am the first included task with {{ item }}"

- name: included task 2

 debug:

 msg: "I am the second included task with {{ item }}"

When executed, we can tell that tasks 1 and 2 are executed a single time for
each item in the loop:

Looping on inclusion is a powerful concept, but it does introduce one
problem. What if there were tasks inside the included file that have their own
loops? There will be a collision of the item variable, creating unexpected
outcomes. For this reason, the loop_control feature was added to Ansible in
version 2.1. Among other things, this feature provides a method to name the
variable used for the loop, instead of the default of item. Using this, we can
distinguish between the item instance that comes outside the inclusion from
any item variables used inside the include. To demonstrate this, we'll add a
loop_var loop control to our outer include:

- name: task inclusion

 hosts: localhost

 gather_facts: false

 tasks:

 - include: more-tasks.yaml

 loop:

 - one

 - two

 loop_control:

 loop_var: include_item

Inside more-tasks.yaml, we'll have a task with its own loop, making use of
include_item and the local item:

- name: included task 1

 debug:

 msg: "I combine {{ item }} and {{ include_item }}"

 with_items:

 - a

 - b

When executed, we see that task 1 is executed twice per inclusion loop and
that the two loop variables are used:

Other loop controls exist as well, such as label, which will define what is
shown on the screen in the task output for the item value (useful for
preventing large data structures from cluttering the screen) and pause,
providing the ability to pause for a defined number of seconds between each
loop.

Including handlers
Handlers are essentially tasks. They're a set of potential tasks triggered by
way of notifications from other tasks. As such, handler tasks can be included
just as regular tasks can. The include operator is legal within the handlers block.

Unlike with task inclusions, variable data cannot be passed along when
including handler tasks. However, it is possible to attach a conditional to a
handler inclusion, to apply the conditional to every handler within the file.

Let's create an example to demonstrate this. First, we'll create a playbook that
has a task that will always change, and that includes a handler task file and
attaches a conditional to that inclusion:

- name: touch files

 hosts: localhost

 gather_facts: false

 tasks:

 - name: a task

 debug:

 msg: "I am a changing task"

 changed_when: true

 notify: a handler

 handlers:

 - include: handlers.yaml

 when: foo | default('true') | bool

When evaluating a variable that may be defined outside a playbook, it's best to use the
bool filter to ensure that strings are properly converted to their Boolean meaning.

Next, we'll create handlers.yaml to define our handler task:

- name: a handler

 debug:

 msg: "handling a thing"

If we execute this playbook without providing any further data, we should see
our handler trigger:

Now let's run the playbook again; this time, we'll define foo as extra-var and
set it to false in our ansible-playbook execution arguments:

This time, since foo evaluates to false, our included handler gets skipped.

Including variables
Variable data can also be separated into loadable files. This allows for the
sharing of variables across multiple plays or playbooks or the inclusion of
variable data that lives outside the project directory (such as secret data).
Variable files are simple YAML-formatted files providing keys and values.
Unlike task inclusion files, variable inclusion files cannot include more files.

Variables can be included in three different ways: via vars_files, via
include_vars, or via --extra-vars (-e).

vars_files
The vars_files key is a play directive. It defines a list of files to read from to
load variable data. These files are read and parsed at the time the playbook
itself is parsed. Just as with including tasks and handlers, the path is relative
to the file referencing the file.

Here is an example play that loads variables from a file:

- name: vars

 hosts: localhost

 gather_facts: false

 vars_files:

 - variables.yaml

 tasks:

 - name: a task

 debug:

 msg: "I am a {{ varname }}"

Now we need to create variables.yaml in the same directory as our playbook:

varname: derp

Running the playbook will show that the name variable value is properly
sourced from the variables.yaml file:

This is, of course, a very simple example, but it demonstrates clearly the ease
of importing variables from a separate file.

Dynamic vars_files inclusion
In certain scenarios, it may be desirable to parameterize the variable files to
be loaded. It is possible to do this by using a variable as part of the filename;
however, the variable must have a value defined at the time the playbook is
parsed, just like when using variables in task names. Let's update our
example play to load a variable file based on the data provided at execution
time:

- name: vars

 hosts: localhost

 gather_facts: false

 vars_files:

 - "{{ varfile }}"

 tasks:

 - name: a task

 debug:

 msg: "I am a {{ varname }}"

Now when we execute the playbook, we'll provide the value for varfile with
the -e argument:

In addition to the variable value needing to be defined at execution time, the

file to be loaded must also exist at execution time. This rule applies even if
the file is generated by the Ansible playbook itself. Let's suppose that an
Ansible playbook consists of four plays. The first play generates a YAML
variable file. Then, further down, the fourth play references this file in a
vars_file directive. Although it might initially appear as though this would
work, the file does not exist at the point of execution (that is, when ansible-
playbook is first run), and hence an error will be reported.

include_vars
The second method to include variable data from files is the include_vars
module. This module will load variables as a task action and will be done for
each host. Unlike most modules, this module is executed locally on the
Ansible host; therefore, all paths are still relative to the play file itself.
Because the variable loading is done as a task, evaluation of variables in the
filename happens when the task is executed. Variable data in the file name can
be host-specific and defined in a preceding task. Additionally, the file itself
does not have to exist at execution time; it can be generated by a preceding
task as well. This is a very powerful and flexible concept that can lead to very
dynamic playbooks if used properly.

Before getting ahead of ourselves, let's demonstrate a simple usage of
include_vars by modifying our existing play to load the variable file as a task:

- name: vars

 hosts: localhost

 gather_facts: false

 tasks:

 - name: load variables

 include_vars: "{{ varfile }}"

 - name: a task

 debug:

 msg: "I am a {{ varname }}"

Execution of the playbook remains the same and our output differs only
slightly from previous iterations:

Just like with other tasks, looping can be done to load more than one file in a
single task. This is particularly effective when using the special
with_first_found loop to iterate through a list of increasingly more generic
filenames until a file is found to be loaded.

Let's demonstrate this by changing our play to use gathered host facts to try
and load a variable file specific to the distribution, specific to the distribution
family, or, finally, a default file:

- name: vars

 hosts: localhost

 gather_facts: true

 tasks:

 - name: load variables

 include_vars: "{{ item }}"

 with_first_found:

 - "{{ ansible_distribution }}.yaml"

 - "{{ ansible_os_family }}.yaml"

 - variables.yaml

 - name: a task

 debug:

 msg: "I am a {{ varname }}"

Execution should look very similar to previous runs, only this time we'll see a

fact-gathering task, and we will not pass along extra variable data in the
execution:

We can also see from the output which file was found to load. In this case,
variables.yaml was loaded, as the other two files did not exist. This practice is
commonly used to load variables that are operating system-specific to the
host in question. Variables for a variety of operating systems can be written
out to appropriately named files. By utilizing the ansible_distribution variable,
which is populated by fact gathering, variable files that use ansible_distribution
values as part of their name can be loaded by way of a with_first_found
argument. A default set of variables can be provided in a file that does not
use any variable data as a failsafe.

extra-vars
The final method to load variable data from a file is to reference a file path
with the --extra-vars (or -e) argument to ansible-playbook. Normally, this
argument expects a set of key=value data; however, if a file path is provided
and prefixed with the @ symbol, Ansible will read the entire file to load
variable data. Let's alter one of our earlier examples, where we used -e, and
instead of defining a variable directly on the command line, we'll include the
variable file we've already written out:

- name: vars

 hosts: localhost

 gather_facts: false

 tasks:

 - name: a task

 debug:

 msg: "I am a {{ varname }}"

When we provide a path after the @ symbol, the path is relative to the current
working directory, regardless of where the playbook itself lives. Let's execute
our playbook and provide a path to variables.yaml:

Here, we can see that once again our variables.yaml file was included
successfully, only, as you can see from the previous code, it is not even

mentioned in the playbook itself—we were able to load it in its entirety
through the -e flag.

When including a variable file with the --extra-vars argument, the file must exist at ansible-
playbook execution time.

Variable inclusion is incredibly powerful in Ansible—but what about
playbooks themselves? Here, things are a bit different, and as the chapter
progresses, we will look at how to make effective use of reusable tasks and
playbook code, thus encouraging good programming practices with Ansible.

Including playbooks
Playbook files can include other whole playbook files. This construct can be
useful to tie together a few independent playbooks into a larger, more
comprehensive playbook. Playbook inclusion is a bit more primitive than task
inclusion. You cannot perform variable substitution when including a
playbook, you cannot apply conditionals, and you cannot apply tags, either.
The playbook files to be included must exist at the time of execution as well.

Prior to Ansible 2.4, playbook inclusion was achieved using the include
keyword—however, this is deprecated and will be removed in Ansible 2.8,
and so it should not be used. Instead, you should now use import_playbook. This
is a play-level directive—it cannot be used as a task. However, it is very easy
to use. Let's define a simple example to demonstrate this. First, let's create a
playbook that will be included, called includeme.yaml:

- name: include playbook

 hosts: localhost

 gather_facts: false

 tasks:

 - name: an included playbook task

 debug:

 msg: "I am in the included playbook"

As you will no doubt recognize by now, this is a complete standalone
playbook and we could run it in isolation:

However, we can also import this into another playbook. Modify the original
includer.yaml playbook so that it looks like this:

- name: include playbook

 hosts: localhost

 gather_facts: false

 tasks:

 - name: a task

 debug:

 msg: "I am in the main playbook"

- name: include a playbook

 import_playbook: includeme.yaml

When we run this, we can see that both debug messages are displayed, and
the imported playbook is run after the initial task, which is the sequence we
defined in the original playbook:

In this way, it is very easy to reuse whole playbooks without needing to
restructure them into the format of roles or otherwise. Note, however, that
this feature is subject to active development in Ansible, so it is recommended
that you always refer to the documentation to ensure you can achieve the
results you are looking for.

Roles
With a functional understanding of the inclusion of variables, tasks, handlers,
and playbooks, we can move on to the more advanced topic of roles. Roles
move beyond the basic structure of a few playbooks and a few broken out
files to reference. Roles provide a framework for fully independent, or
interdependent, collections of variables, tasks, files, templates, and modules.
Each role is typically limited to a particular theme or a desired end result,
with all the necessary steps to reach that result either within the role itself or
in other roles listed as dependencies. Roles themselves are not playbooks.
There is no way to directly execute a role. Roles have no setting for which
host the role will apply to. Top-level playbooks are the glue that binds the
hosts from your inventory to roles that should be applied to those hosts.

Role structure
Roles have a structured layout on the filesystem. This structure exists to
provide automation around including tasks, handlers, variables, modules, and
role dependencies. The structure also allows for the easy reference of files
and templates from anywhere within the role.

Roles all live in a subdirectory of a playbook directory structure in the roles/
directory. This is, of course, configurable by way of the roles_path general
configuration key, but let's stick to the defaults. Each role is itself a directory
tree. The role name is the directory name within roles/. Each role can have a
number of subdirectories with special meanings that are processed when a
role is applied to a set of hosts.

A role may contain all these elements, or as few as just one of them. Missing
elements are simply ignored. Some roles exist just to provide common
handlers across a project. Other roles exist as a single dependency point that
in turn just depends on numerous other roles.

Tasks
The task file is the main part of a role. If roles/<role_name>/tasks/main.yaml exists,
all the tasks therein and any other files it includes will be embedded in the
play and executed.

Handlers
Similar to tasks, handlers are automatically loaded from
roles/<role_name>/handlers/main.yaml, if the file exists. These handlers can be
referenced by any task within the role, or by any tasks within any other role
that lists this role as a dependency.

Variables
There are two types of variables that can be defined in a role. There are role
variables, loaded from roles/<role_name>/vars/main.yaml, and there are role
defaults, loaded from roles/<role_name>/defaults/main.yaml. The difference
between vars and defaults has to do with precedence order. Refer to Chapter 1,
The System Architecture and Design of Ansible, for a detailed description of
the order. Role defaults are the lowest order variables. Literally any other
definition of a variable will take precedence over a role default. Role defaults
can be thought of as placeholders for actual data, a reference of what
variables a developer may be interested in defining with site-specific values.
Role variables, on the other hand, have a higher order of precedence. Role
variables can be overridden, but generally they are used when the same
dataset is referenced more than once within a role. If the dataset is to be
redefined with site-local values, then the variable should be listed in the role
defaults rather than the role variables.

Modules and plugins
A role can include custom modules as well as plugins. While the Ansible
project is quite good at reviewing and accepting submitted modules, there are
certain cases where it may not be advisable or even legal to submit a custom
module upstream. In those cases, delivering the module with the role may be
a better option. Modules can be loaded from roles/<role_name>/library/ and can
be used by any task in the role, or any later role. Modules provided in this
path will override any other copies of the same module name anywhere else
on the filesystem, which can be a way to distribute added functionality to a
core module before the functionality has been accepted upstream and released
with a new version of Ansible.

Likewise, plugins are often used to tweak Ansible behavior in a way that
makes sense for a particular environment and are unsuitable for upstream
contribution. Plugins can be distributed as part of a role, which may be easier
than explicitly installing plugins on every host that will act as an Ansible
control host.

Plugins will automatically be loaded if found inside of a role, in one of the
following subdirectories:

action_plugins

lookup_plugins

callback_plugins

connection_plugins

filter_plugins

strategy_plugins

cache_plugins

test_plugins

shell_plugins

Dependencies
Roles can express a dependency upon another role. It is a common practice
for sets of roles to all depend on a common role for tasks, handlers, modules,
and so on. Those roles may depend upon only having to be defined once.
When Ansible processes a role for a set of hosts, it will first look for any
dependencies listed in roles/<role_name>/meta/main.yaml. If any are defined, those
roles will be processed and the tasks within will be executed (after checking
for any dependencies listed within, too) until all dependencies have been
completed before starting on the initial role tasks. We will describe role
dependencies in more depth later in this chapter.

Files and templates
Task and handler modules can reference files relatively within
roles/<role_name>/files/. The filename can be provided without any prefix and
will be sourced from roles/<role_name>/files/<file_name>. Relative prefixes are
allowed as well, in order to access files within subdirectories of
roles/<role_name>/files/. Modules such as template, copy, and script may take
advantage of this.

Similarly, templates used by the template module can be referenced relatively
within roles/<role_name>/templates/. This sample code uses a relative path to
load the derp.j2 template from the full roles/<role_name>/templates/herp/derp.j2
path:

- name: configure herp

 template:

 src: herp/derp.j2

 dest: /etc/herp/derp.j2

In this way, it is easy to organize files within the standard role directory
structure, and still access them easily from within the role without having to
type in long and complex paths.

Putting it all together
To illustrate what a full role structure might look like, here is an example role
by the name of demo:

roles/demo

├── defaults

│ └── main.yaml

├── files

│ └── foo

├── handlers

│ └── main.yaml

├── library

│ └── samplemod.py

├── meta

│ └── main.yaml

├── tasks

│ └── main.yaml

├── templates

│ └── bar.j2

└── vars

 └── main.yaml

When creating a role, not every directory or file is required. Only the files
that exist will be processed. Thus, our example of your role does not require
or use handlers; the entire handlers part of the tree could simply be left out.

Role dependencies
As stated before, roles can depend on other roles. These relationships are
called dependencies and they are described in a role's meta/main.yaml file. This file
expects a top-level data hash with a key of dependencies; the data within is a list
of roles:

dependencies:

 - role: common

 - role: apache

In this example, Ansible will fully process the common role first (and any
dependencies it may express) before continuing with the apache role and then
finally starting on the role's tasks.

Dependencies can be referenced by name without any prefix if they exist
within the same directory structure or live within the configured roles_path.
Otherwise, full paths can be used to locate roles:

role: /opt/ansible/site-roles/apache

When expressing a dependency, it is possible to pass along data to the
dependency. The data can be variables, tags, or even conditionals.

Role dependency variables
Variables that are passed along when listing a dependency will override
values for matching variables defined in defaults/main.yaml or vars/main.yaml.
This can be useful for using a common role, such as an apache role, as a
dependency while providing site-specific data such as what ports to open in
the firewall or what apache modules to enable. Variables are expressed as
additional keys to the role listing. Thus, continuing our hypothetical example,
consider that we need to pass some variables to both the common and apache role
dependencies we discussed:

dependencies:

 - role: common

 simple_var_a: True

 simple_var_b: False

 - role: apache

 complex_var:

 key1: value1

 key2: value2

 short_list:

 - 8080

 - 8081

When providing dependency variable data, two names are reserved and
should not be used as role variables: tags and when. The former is used to pass
tag data into a role, and the latter is used to pass a conditional into the role.

Tags
Tags can be applied to all the tasks found within a dependency role. This
functions much in the same way as tags being applied to included task files,
as described earlier in this chapter. The syntax is simple: the tags key can be a
single item or a list. To demonstrate, let's further expand our theoretical
example by adding some tags:

dependencies:

 - role: common

 simple_var_a: True

 simple_var_b: False

 tags: common_demo

 - role: apache

 complex_var:

 key1: value1

 key2: value2

 short_list:

 - 8080

 - 8081

 tags:

 - apache_demo

 - 8080

 - 8181

As with adding tags to the included task files, all the tasks found within a
dependency (and any dependency within that hierarchy) will gain the
provided tags.

Role dependency conditionals
While it is not possible to prevent the processing of a dependency role with a
conditional, it is possible to skip all the tasks within a dependency role
hierarchy by applying a conditional to a dependency. This mirrors the
functionality of task inclusion with conditionals as well. The when key is used
to express the conditional. Once again, we'll grow our example by adding a
dependency to demonstrate the syntax:

dependencies:

 - role: common

 simple_var_a: True

 simple_var_b: False

 tags: common_demo

 - role: apache

 complex_var:

 key1: value1

 key2: value2

 short_list:

 - 8080

 - 8081

 tags:

 - apache_demo

 - 8080

 - 8181

 when: backend_server == 'apache'

In this example, the apache role will always be processed, but tasks within the
role will only be run when the backend_server variable contains the apache string.

Role application
Roles are not plays. They do not possess any opinions about which hosts the
role tasks should run on, what connection methods to use, whether to operate
serially, or any other play behaviors described in Chapter 1, The System
Architecture and Design of Ansible. Roles must be applied inside a play
within a playbook, where all these opinions can be expressed.

To apply a role within a play, the roles operator is used. This operator expects
a list of roles to apply to the hosts in the play. Much like describing role
dependencies, when describing roles to apply, data can be passed along, such
as variables, tags, and conditionals. The syntax is exactly the same.

To demonstrate applying roles within a play, let's create a simple role and
apply it to a simple playbook. First, let's build the role named simple, which
will have a single debug task in roles/simple/tasks/main.yaml that prints the value
of a role default variable defined in roles/simple/defaults/main.yaml. First, let's
create the task file (in the tasks/ subdirectory):

- name: print a variable

 debug:

 var: derp

Next, we'll write our default file with a single variable, derp:

derp: herp

To execute this role, we'll write a playbook with a single play to apply the
role. We'll call our playbook roleplay.yaml, and it'll live at the same directory
level as the roles/ directory:

- hosts: localhost

 gather_facts: false

 roles:

 - role: simple

If no data is provided with the role, an alternative syntax that just lists the roles to apply

can be used, instead of the hash. However, for consistency, I feel it's best to always use
the same syntax within a project.

We'll reuse our mastery-hosts inventory from earlier chapters and execute the
playbook:

Thanks to the magic of roles, the derp variable value was automatically loaded
from the role defaults. Of course, we can override the default value when
applying the role. Let's modify our playbook and supply a new value for derp:

- hosts: localhost

 gather_facts: false

 roles:

 - role: simple

 derp: newval

This time when we execute, we'll see newval as the value for derp:

Multiple roles can be applied within a single play. The roles: key expects a
list value. Just add more roles to apply more roles (the next example is
theoretical and left as an exercise for the reader):

- hosts: localhost

 gather_facts: false

 roles:

 - role: simple

 derp: newval

 - role: second_role

 othervar: value

 - role: third_role

 - role: another_role

This playbook will load a total of four roles—simple, second_role, third_role, and
another_role—and each will be executed in the sequence in which they are
listed.

Mixing roles and tasks
Plays that use roles are not limited to just roles. These plays can have tasks of
their own, as well as two other blocks of tasks: pre_tasks and post_tasks. The
order in which these are executed is not dependent upon which order these
sections are listed in the play itself; instead, there is a strict order to block
execution within a play. See Chapter 1, The System Architecture and Design of
Ansible, for details on the playbook order of operations.

Handlers for a play are flushed at multiple points. If there is a pre_tasks block,
handlers are flushed after all pre_tasks are executed. Then, the roles and tasks
blocks are executed (roles first, then tasks, regardless of the order they are
written in the playbook), after which handlers will be flushed again. Finally,
if a post_tasks block exists, handlers will be flushed once again after all
post_tasks have executed. Of course, handlers can be flushed at any time with
the meta: flush_handlers call. Let's expand on our roleplay.yaml to demonstrate all
the different times handlers can be triggered:

- hosts: localhost

 gather_facts: false

 pre_tasks:

 - name: pretask

 debug:

 msg: "a pre task"

 changed_when: true

 notify: say hi

 roles:

 - role: simple

 derp: newval

 tasks:

 - name: task

 debug:

 msg: "a task"

 changed_when: true

 notify: say hi

 post_tasks:

 - name: posttask

 debug:

 msg: "a post task"

 changed_when: true

 notify: say hi

 handlers:

 - name: say hi

 debug:

 msg: "hi"

We'll also modify our simple role's tasks to notify the say hi handler as well:

- name: print a variable

 debug:

 var: derp

 changed_when: true

 notify: say hi

This only works because the say hi handler has been defined in the play that is calling the
simple role. If the handler is not defined, an error will occur. It's best practice to only
notify handlers that exist within the same role or any role marked as a dependency.

Running our playbook should result in the say hi handler being called a total
of three times: once for pre_tasks, once for roles and tasks, and once for
post_tasks:

While the order in which pre_tasks, roles, tasks, and post_tasks are written into a
play does not impact the order in which those sections are executed, it's best
practice to write them in the order that they will be executed. This is a visual
cue to help remember the order and to avoid confusion when reading the
playbook later.

Role includes and imports
With Ansible version 2.2, a new action plugin was made available as a
technical preview, include_role. Then, in Ansible Version 2.4, this concept was
further developed by the addition of the import_role plugin.

These plugins are used in a task to include and execute an entire role directly
from a task. The difference between the two is subtle but important—the
include_role plugin is considered dynamic, meaning the code is processed
during runtime when the task referencing it is encountered. The import_role
plugin, on the other hand, is considered static, meaning all imports are pre-
processed at the time the playbook is initially parsed. This has various
impacts on their use in playbooks—for example, import_role cannot be used in
loops, while include_role can.

Full details of the tradeoffs between importing and including can be found in the official
Ansible documentation here: https://docs.ansible.com/ansible/latest/user_guide/playbooks_reuse.html.

As both of these plugins are currently considered a technical preview at the
time of writing, they are not guaranteed to exist in their current form in future
Ansible releases. Thus, reliance on this functionality should be avoided
unless you absolutely need it for a specific purpose.

https://docs.ansible.com/ansible/latest/user_guide/playbooks_reuse.html

Role sharing
One of the advantages of using roles is the ability to share the role across
plays, playbooks, entire project spaces, and even across organizations. Roles
are designed to be self-contained (or to clearly reference dependent roles) so
that they can exist outside of a project space where the playbook that applies
the role lives. Roles can be installed in shared paths on an Ansible host, or
they can be distributed via source control.

Ansible Galaxy
Ansible Galaxy (https://galaxy.ansible.com/) is a community hub for finding
and sharing Ansible roles. Anybody can visit the website to browse the roles
and reviews; plus, users who create a login can provide reviews of the roles
they've tested. Roles from Galaxy can be downloaded using the ansible-galaxy
utility provided with Ansible.

The ansible-galaxy utility can connect to and install roles from the Ansible
Galaxy website. This utility will default to installing roles into
/etc/ansible/roles. If roles_path is configured, or if a runtime path is provided
with the --roles-path (or -p) option, the roles will be installed there instead. If
any roles have been installed to the roles_path or the provided path, ansible-
galaxy can list those and show information about those as well. To
demonstrate the usage of ansible-galaxy, let's use it to install a role for
installing and managing Docker on Ubuntu from Ansible Galaxy into the
roles directory we've been working with. Installing roles from Ansible
Galaxy requires username.rolename, as multiple users may have uploaded roles
with the same name. In this case, we want the docker_ubuntu role from the user
angstwad:

Now we can make use of this role by referencing angstwad.docker_ubuntu in a

https://galaxy.ansible.com/

play or another role's dependencies block. We can also list it and gain
information about it using the ansible-galaxy utility:

The output was capped at 25 lines, to avoid displaying the entire information
set and README.md contents. Some of the data being displayed by the info
command lives within the role itself, in the meta/main.yaml file. Previously,
we've only seen dependency information in this file, and it may not have
made much sense to name the directory meta, but now we see that other
metadata lives in this file as well:

The ansible-galaxy utility can also help with the creation of new roles. The init
method will create a skeleton directory tree for the role, as well as populate
the meta/main.yaml file with placeholders for Galaxy-related data. The init
method takes a variety of options, as shown in the help output:

Let's demonstrate this capability by creating a new role in our working
directory named autogen:

Note that where we have used the -p switch in the past for specifying the local
roles/ directory, we have to use the --init-path switch instead with the init
command. For roles that are not suitable for Ansible Galaxy, such as roles
dealing with in-house systems, ansible-galaxy can install directly from a Git
URL. Instead of just providing a role name to the install method, a full Git
URL with an optional version can be provided instead. For example, if we
wanted to install the foowhiz role from our internal Git server, we could simply

do the following:

Without version information, the master branch will be used. Without name
data, the name will be determined from the URL itself. To provide a version,
append a comma and the version string that Git can understand, such as a tag
or branch name, such as v1:

A name for the role can be added with another comma followed by the name
string. If you need to supply a name but do not wish to supply a version, an
empty slot is still required for the version:

Roles can also be installed directly from tarballs as well, by providing a URL
to the tarball in lieu of a full Git URL or a role name to fetch from Ansible
Galaxy.

When you need to install many roles for a project, it's possible to define
multiple roles to download and install in a YAML-formatted file that ends
with .yaml (or .yml). The format of this file allows you to specify multiple roles
from multiple sources and retain the ability to specify versions and role
names. In addition, the source control method can be listed (currently, only
git and hg are supported):

- src: <name or url>

 version: <optional version>

 name: <optional name override>

 scm: <optional defined source control mechanism>

To install all the roles within a file, use the --roles-file (-r) option with the
install method:

In this manner, it is very easy to gather all your role dependencies prior to
running your playbooks, and whether the roles you need are publicly
available on Ansible Galaxy or held in your own internal source-control
management system, this simple step can greatly speed along playbook
deployment while supporting code reuse.

Summary
Ansible provides the capability to divide content logically into separate files.
This capability helps project developers to not repeat the same code over and
over again. Roles within Ansible take this capability a step further and wrap
some magic around the paths to the content. Roles are tunable, reusable,
portable, and shareable blocks of functionality. Ansible Galaxy exists as a
community hub for developers to find, rate, and share roles. The ansible-galaxy
command-line tool provides a method to interact with the Ansible Galaxy site
or other role-sharing mechanisms. These capabilities and tools help with the
organization and utilization of common code.

In this chapter, you learned all about inclusion concepts relating to tasks,
handlers, variables, and even entire playbooks. Then you expanded on this
knowledge by learning about roles—their structure, setting default variable
values, and handling role dependencies. You then proceeded to learn about
designing playbooks to utilize roles effectively, and applying options such as
tags that roles otherwise lack. Finally, you learned about sharing roles across
projects using repositories such as Git and Ansible Galaxy.

In the next chapter, we'll cover useful and effective troubleshooting
techniques to help you when your Ansible deployments run into trouble.

Troubleshooting Ansible
Ansible is simple, but powerful. The simplicity of Ansible means that its
operation is easy to understand and follow. Being able to understand and
follow this is critically important when debugging unexpected behavior. In
this chapter, we will explore the various methods that can be employed to
examine, introspect, modify, and otherwise debug the operation of Ansible.
In this chapter, we will look at the following topics:

Playbook logging and verbosity
Variable introspection
Playbook debugging
Ansible console
Debugging local code execution
Debugging remote code execution

Technical requirements
Check out the following video to see the Code in Action:

http://bit.ly/2Fsi4ij

http://bit.ly/2Fsi4ij

Playbook logging and verbosity
Increasing the verbosity of Ansible output can solve many problems. From
invalid module arguments to incorrect connection commands, increased
verbosity can be critical in pinpointing the source of an error. Playbook
logging and verbosity was briefly discussed in Chapter 2, Protecting Your
Secrets with Ansible, with regard to protecting secret values while executing
playbooks. This section will cover verbosity and logging in further detail.

Verbosity
When executing playbooks with ansible-playbook, the output is displayed on
standard out. With the default level of verbosity, very little information is
displayed. As a play is executed, ansible-playbook will print a PLAY header
with the name of the play. Then, for each task, a task header is printed with
the name of the task. As each host executes the task, the name of the host is
displayed along with the task state, which can be ok, fatal, or changed. No
further information about the task is displayed, such as the module being
executed, the arguments provided to the module, or the return data from the
execution. While this is fine for well-established playbooks, I tend to want a
little more information about my plays. In a few of the earlier examples in
this book, we used higher levels of verbosity, up to level of two (-vv), so that
we can see the location of the task and return data. There are five total levels
of verbosity:

None: The default level
One (-v): Where the return data and conditional information is displayed
Two (-vv): For task location and handler notification information
Three (-vvv): Provides details of the connection attempts and task
invocation information
Four (-vvvv): Pass along extra verbosity options to the connection
plugins (such as passing -vvv to the ssh commands)

Increasing the verbosity can help pinpoint where errors might be occurring,
as well as providing extra insight into how Ansible is performing its
operations.

As we mentioned in Chapter 2, Protecting Your Secrets with Ansible, verbosity
beyond level one can leak sensitive data to standard out and log files, so care
should be taken when using increased verbosity in a potentially shared
environment.

Logging
While the default is for ansible-playbook to log to standard out, the amount of
output may be greater than the buffer of the Terminal emulator being used;
therefore, it may be necessary to save all the output to a file. While various
shells provide some mechanism to redirect output, a more elegant solution is
to direct ansible-playbook to log to a file. This is accomplished by way of either
a log_path definition in the ansible.cfg file, or by setting ANSIBLE_LOG_PATH as an
environment variable. The value of either should be the path to a file. If the
path does not exist, Ansible will attempt to create the file. If the file does
exist, Ansible will append to the file, allowing consolidation of multiple
ansible-playbook execution logs.

The use of a log file is not mutually exclusive with logging to standard
output. Both can happen at the same time, and the verbosity level that's
provided has an effect on both, simultaneously.

Variable introspection
A common set of problems that are encountered when developing Ansible
playbooks is the improper use, or invalid assumption, of the value of
variables. This is particularly common when registering the results of one
task in a variable, and later using that variable in a task or template. If the
desired element of the result is not accessed properly, the end result will be
unexpected, or perhaps even harmful.

To troubleshoot improper variable usage, inspection of the variable value is
the key. The easiest way to inspect a variable's value is with the debug
module. The debug module allows for displaying free form text on screen,
and like with other tasks, the arguments to the module can take advantage of
the Jinja2 template syntax as well. Let's demonstrate this usage by creating a
sample play that executes a task, registers the result, and then shows the
result in a debug statement using the Jinja2 syntax to render the variable:

- name: variable introspection demo

 hosts: localhost

 gather_facts: false

 tasks:

 - name: do a thing

 uri:

 url: https://derpops.bike

 register: derpops

 - name: show derpops

 debug:

 msg: "derpops value is {{ derpops }}"

When we run this play, we'll see a displayed value for derpops, as shown in the
following screenshot:

The debug module has a different option that may be useful as well. Instead
of printing a free form string to debug template usage, the module can simply
print the value of any variable. This is done using the var argument instead of
the msg argument. Let's repeat our example, but this time, we'll use the var
argument, and we'll access just the server subelement of the derpops variable, as
follows:

- name: variable introspection demo

 hosts: localhost

 gather_facts: false

 tasks:

 - name: do a thing

 uri:

 url: https://derpops.bike

 register: derpops

 - name: show derpops

 debug:

 var: derpops.server

Running this modified play will show just the server portion of the derpops
variable, as shown in the following screenshot:

In our example that used the msg argument to debug, the variable needed to be
expressed inside curly brackets, but when using var, it did not. This is because
msg expects a string, and so Ansible needs to render the variable as a string via
the template engine. However, var expects a single unrendered variable.

Variable subelements
Another frequent mistake in playbooks is to improperly reference a
subelement of a complex variable. A complex variable is one that is more
than simply a string; it is either a list or a hash. Often, the wrong subelement
will be referenced, or the element will be improperly referenced, expecting a
different type.

While lists are fairly easy to work with, hashes present some unique
challenges. A hash is an unordered key-value set of potentially mixed types,
which could also be nested. A hash can have one element that is a single
string, while another element can be a list of strings, and a third element can
be another hash with further elements inside it. Knowing how to properly
access the right subelement is critical to success.

For example, let's modify our previous play a bit more. This time, we'll allow
Ansible to gather facts, and then we'll show the value of ansible_python:

- name: variable introspection demo

 hosts: localhost

 tasks:

 - name: show a complex hash

 debug:

 var: ansible_python

The output is shown in the following screenshot:

Using debug to display the entire complex variable is a great way to learn all
the names of the subelements.

This variable has elements that are strings, along with elements that are lists
of strings. Let's access the last item in the list of flags, as follows:

- name: variable introspection demo

 hosts: localhost

 tasks:

 - name: show a complex hash

 debug:

 var: ansible_python.version_info[-1]

The output is shown in the following screenshot:

Because flags is a list, we can use the list index method to select a specific
item from the list. In this case, -1 will give us the very last item in the list.

Subelements versus Python object
method
A less common but confusing gotcha comes from a quirk of the Jinja2
syntax. Complex variables within Ansible playbooks and templates can be
referenced in two ways. The first style is to reference the base element by the
name, followed by a bracket, and the subelement within quotes inside the
brackets. This is the standard subscript syntax. For example, to access the
herp subelement of the derp variable, we will use the following:

{{ derp['herp'] }}

The second style is a convenience method that Jinja2 provides, which is to
use a period to separate the elements. This is called dot notation, and is as
follows:

{{ derp.herp }}

There is a subtle difference in how these styles work, and it has to do with
Python objects and object methods. As Jinja2 is, at its heart, a Python utility,
variables in Jinja2 have access to their native Python methods. A string
variable has access to Python string methods, a list has access to list methods,
and a dictionary has access to dictionary methods. When using the first style,
Jinja2 will first search the element for a subelement of the provided name. If
none are found, Jinja2 will then attempt to access a Python method of the
provided name. However, the order is reversed when using the second style;
first, a Python object method is searched for, and if not found, then a
subelement is searched for. This difference matters when there is a name
collision between a subelement and a method. Imagine a variable named derp,
which is a complex variable. This variable has a subelement named keys.
Using each style to access the keys element will result in different values.
Let's build a playbook to demonstrate this:

- name: sub-element access styles

 hosts: localhost

 gather_facts: false

 vars:

 - derp:

 keys:

 - c

 - d

 tasks:

 - name: subscript style

 debug:

 var: derp['keys']

 - name: dot notation style

 debug:

 var: derp.keys

When running this play, we can clearly see the difference between the two
styles. The first style successfully references the keys subelement, while the
second style references the keys method of Python dictionaries:

Generally, it's best to avoid using subelement names that conflict with Python
object methods. However, if that's not possible, the next best thing to do is to
be aware of the difference in subelement reference styles, and choose the
appropriate one.

Debugging code execution
Sometimes, the logging and inspection of variable data is not enough to
troubleshoot a problem. When this happens, it can be necessary to
interactively debug the playbook, or to dig deeper into the internals of
Ansible code. There are two main sets of Ansible code: the code that runs
locally on the Ansible host, and the module code that runs remotely on the
target host.

Playbook debugging
Playbooks can be interactively debugged by using an execution strategy that
was introduced in Ansible 2.1, the debug strategy. If a play uses this strategy,
when an error state is encountered an interactive debugging session starts.
This interactive session can be used to display variable data, display task
arguments, update task arguments, update variables, redo task execution,
continue execution, or exit the debugger.

Let's demonstrate this with a play that has a successful task, followed by a
task with an error, followed by a final successful task. We'll reuse the
playbook we've been using, but update it a bit, as shown in the following
code:

- name: sub-element access styles

 hosts: localhost

 gather_facts: false

 strategy: debug

 vars:

 - derp:

 keys:

 - c

 - d

 tasks:

 - name: subscript style

 debug:

 var: derp['keys']

 - name: failing task

 debug:

 msg: "this is {{ derp['missing'] }}"

 - name: final task

 debug:

 msg: "my only friend the end"

Upon execution, Ansible will encounter an error in our failing task and
present the (debug) prompt, as shown in the following screenshot:

From this prompt, we can display the task and the arguments to the task by
using the p command, as follows:

We can also change the playbook on the fly to try different arguments or
variable values. Let's define the missing key of the derp variable, and then
retry the execution. All of the variables are within the top-level vars
dictionary. We can directly set the variable data using Python syntax and the
task_vars command, and then retry with the r command:

The debug execution strategy is a handy tool for quickly iterating through
different task argument and variable combinations to figure out the correct
path forward. However, because errors result in interactive consoles, the
debug strategy is inappropriate for automated executions of playbooks, as
there is no human on the console to manipulate the debugger.

Changing data within the debugger will not save the changes to backing files. Always
remember to update playbook files to reflect discoveries that are made during debugging.

Debugging local code
The local Ansible code is the lion's share of the code that comes with
Ansible. All the playbook, play, role, and task parsing code lives locally. All
of the task result processing code and transport code lives locally. All of the
code, except for the assembled module code that is transported to the remote
host lives locally.

Local Ansible code can be broken down into three major sections: inventory,
playbook, and executor. Inventory code deals with parsing inventory data
from host files, dynamic inventory scripts, or combinations of the two, in
directory trees. Playbook code is used to parse the playbook YAML code into
Python objects within Ansible. Executor code is the core API and deals with
forking processes, connecting to hosts, executing modules, handling results,
and most other things. Learning the general area to start debugging comes
with practice, but the general areas that are described here are a starting point.

As Ansible is written in Python, the tool for debugging local code execution
is the Python debugger, pdb. This tool allows us to insert breakpoints inside
the Ansible code and interactively walk through the execution of the code,
line by line. This is very useful for examining the internal state of Ansible as
the local code executes. There are many books and websites that cover the
usage of pdb, and these can be found with a simple web search for an
introduction to Python pdb, so we will not repeat them here. The basics are to
edit the source file to be debugged, insert a new line of code to create a
breakpoint, and then execute the code. Code execution will stop where the
breakpoint was created, and a prompt will be provided to explore the code
state.

Debugging inventory code
Inventory code deals with finding inventory sources, reading or executing the
discovered files, parsing the inventory data into inventory objects, and
loading variable data for the inventory. To debug how Ansible will deal with
an inventory, a breakpoint must be added inside inventory/__init__.py or one of
the other files within the inventory/ subdirectory. This directory will be located
on the local filesystem wherever Ansible has been installed. On a Linux
system, this is typically stored in the /usr/lib/python2.7/site-
packages/ansible/inventory/ path. This path may be inside a Python virtual
environment if Ansible has been installed that way. To discover where
Ansible is installed, simply type which ansible from the command line. This
command will show you where the Ansible executable is installed, and may
indicate a Python virtual environment. For this book, Ansible has been
installed using the operating system Python distribute, with the Ansible
binaries located in /usr/bin/.

To discover the path to the Ansible Python code, simply type python -c "import
ansible; print(ansible)". On my system, this shows <module 'ansible' from
'/usr/lib/python2.7/site-packages/ansible/__init__.pyc'>, from which we can
deduce that the inventory subdirectory is located at /usr/lib/python2.7/site-
packages/ansible/inventory.

The inventory directory has been restructured in recent releases of Ansible,
and in version 2.7, we need to look in inventory/manager.py. Here, there is a
class definition for the Inventory class. This is the inventory object that will be
used throughout a playbook run, and it is created when ansible-playbook parses
the options provided to it for an inventory source. The __init__ method of the
Inventory class does all the inventory discovery, parsing, and variable loading.
To troubleshoot an issue in those three areas, a breakpoint should be added
within the __init__() method. A good place to start would be after all of the
class variables are given an initial value, and just before any data is
processed.

In version 2.7.5.0 of Ansible, this would be line 143 of inventory/manager.py,
where the parse_sources function is called.

We can skip down to the parse_sources function definition on line 195 to insert
our breakpoint. To insert a breakpoint, we must first import the pdb module
and then call the set_trace() function, as follows:

To start debugging, save the source file and then execute ansible-playbook as
normal. When the breakpoint is reached, the execution will stop and a pdb

prompt will be displayed:

From here, we can issue any number of debugger commands, such as the help
command, as follows:

The where and list commands can help us determine where we are in the stack,
and where we are in the code:

The where command shows us that we're in inventory/manager.py in the
parse_sources() method. The next frame up is the same file, the __init__()
function. Before that is a different file, the playbook.py file, and the function in
that file is run(). This line calls to ansible.inventory.InventoryManager to create the
inventory object. Before that is the original file, ansible-playbook, calling
cli.run().

The list command shows the source code around our current point of
execution, five lines before, and five lines after.

From here, we can guide pdb through the function line by line with the next
command. And, if we choose to, we can trace into other function calls with
the step command. We can also print variable data to inspect values, as shown
in the following screenshot:

We can see that the self._sources variable has a full path of our mastery-hosts
inventory file, which is the string we gave ansible-playbook for our inventory
data. We can continue to walk through or jump around, or just use the continue
command to run until the next breakpoint or the completion of the code.

Debugging playbook code
Playbook code is responsible for loading, parsing, and executing playbooks.
The main entry point for playbook handling is playbook/__init__.py, inside of
which lives the PlayBook class. A good starting point for debugging
playbook handling is line 77:

Putting a breakpoint here will allow us to trace through finding the playbook
file and parsing it. Specifically, by stepping into the
self._loader.load_from_file() function call, we will be able to follow the parsing
in action.

The PlayBook class load() function just does the initial parsing. Other classes
within other directories are used for the execution of plays and tasks. A

particularly interesting directory is the executor/ directory, which holds files
with classes to execute playbooks, plays, and tasks. The run() function within
the PlaybookExecutor class that's defined in the executor/playbook_executor.py file
will loop through all of the plays in the playbook and execute the plays,
which will, in turn, execute the individual tasks. This is the function to walk
through if facing an issue related to play parsing, play or task callbacks, tags,
play host selection, serial operation, handler running, or anything in-between.

Debugging executor code
Executor code in Ansible is the connector code that binds together inventory
data, playbooks, plays, tasks, and connection methods. While each of those
other code bits can be individually debugged, how they interact can be
examined within executor code.

The executor classes are defined in various files within executor/ and the
PlaybookExecutor class. This class handles executing all of the plays and tasks
within a given playbook. The class creation function, __init__(), creates a
series of placeholder attributes, as well as setting some default values, while
the run() function is where most of the fun happens.

Debugging can often take you from one file to another, jumping around the
code base. For example, in the __init__() function of the PlaybookExecutor class,
there is code to cache whether or not the default SSH executable supports
ControlPersist. ControlPersist is the feature of SSH that keeps sockets to remote
hosts open for a period of time for fast reuse. Let's put a breakpoint here and
follow the code:

Now, we can run our objmethod.yml playbook again to get into a debugging
state:

We'll need to step into the function to follow the execution. Stepping into the
function will take us to a different file, as follows:

From here, we can use list to see the code in our new file:

Walking a few more lines down, we come to a block of code that will execute
an ssh command and check the output to determine whether ControlPersist is
supported:

Let's walk through the next couple of lines and then print out what the value
of err is. This will show us the result of the ssh execution and the whole string
that Ansible will be searching within:

As we can see, the search string is not within the err variable, so the value of
has_cp remains as the default of True.

A quick note on forks and debugging: When Ansible uses multiprocessing for multiple
forks, debugging becomes difficult. A debugger may be attached to one fork and not
another, which will make it very difficult to debug the code. Unless specifically debugging
the multiprocessing code, it's a best practice to stick to a single fork.

Debugging remote code
The remote code is the code that Ansible transports to a remote host to
execute it. This is typically module code, or in the case of action_plugins, other
snippets of code. Using the debugging method we discussed in the previous
section to debug module execution will not work, as Ansible simply copies
the code over and then executes it. There is no Terminal attached to the
remote code execution, and thus there is no way to attach it to a debugging
prompt, that is, without editing the module code.

To debug module code, we need to edit the module code itself to insert a
debugger breakpoint. Instead of directly editing the installed module file,
create a copy of the file in a library/ directory relative to the playbooks. This
copy of the module code will be used instead of the installed file, which
makes it easy to temporarily edit a module without disrupting other users of
modules on the system.

Unlike other Ansible code, module code cannot be directly debugged with
pdb, because the module code is assembled and then transported to a remote
host. Thankfully, there is a solution in the form of a slightly different
debugger named rpdb the Remote Python Debugger. This debugger has the
ability to start a listening service on a provided port to allow remote
connections into the Python process. Connecting to the process remotely will
allow debugging the code line by line, just as we did with other Ansible code.

To demonstrate how this debugger works, first, we're going to need a remote
host. For this example, we're using a remote host by the name of
debug.example.com, and setting the IP address to a host that is already set up and
waiting. Next, we need a playbook to execute a module that we'd like to
debug:

- name: remote code debug

 hosts: debug.example.com

 gather_facts: false

 become: true

 tasks:

 - name: a remote module execution

 systemd:

 name: nginx

 state: stopped

 enabled: no

We will also need a new inventory file to reference our new test host—as I
don't have DNS set up for this host, I'm using the special ansible_host variable
in the inventory to tell Ansible which IP address to connect to debug.example.com
on:

debug.example.com ansible_host=192.168.81.154

Don't forget to set up SSH authentication between your two hosts—I'm using an SSH key
so that I don't need to type in a password every time I run ansible-playbook.

This play simply calls the systemd module to ensure that the nginx service is
stopped and will not start up on boot. As we stated previously, we need to
make a copy of the service module and place it in library/. The location of the
service module to copy from will vary based on the way Ansible is installed.
Typically, this module will be located in the modules/core/system/ subdirectory
of where the Ansible Python code lives, like /usr/lib/python2.7/site-
packages/ansible/modules/system/systemd.py on my system. Then, we can edit it to
put in our breakpoint, as follows:

We'll put the breakpoint just before the systemctl variable value gets created,
near line 318. First, the rpdb module must be imported (meaning that the rpdb
Python library needs to exist on the remote host), and then the breakpoint
needs to be created with set_trace().

On CentOS 7 and other EL7 variants like the host that was used in the demo, rpdb can be
installed using the following command: sudo yum install python2-rpdb.

Unlike the regular debugger, this function will open a port and listen for
external connections. By default, the function will listen for connections to
port 4444 on the address 127.0.0.1. However, that address is not exposed over
the network, so in my example, I've instructed rpdb to listen on address 0.0.0.0,
which is effectively every address on the host. Now, we can run this
playbook to set up the server that will wait for a client connection:

Now that the server is running, we can connect to it from another Terminal.
Connecting to the running process can be accomplished with the telnet
program:

From this point on, we can debug as normal. The commands we used before
still exist, such as list to show where in the code the current frame is:

Using the debugger, we can walk through the systemd module to track how it
determines the path to the underlying tool, trace which commands are
executed on the host, determine how a change is computed, and so on. The
entire file can be stepped through, including any other external libraries the
module may make use of, allowing for the debugging of other non-module
code on the remote host as well.

If the debugging session allows the module to exit cleanly, the playbook's
execution will return as normal. However, if the debugging session is
disconnected before the module completes, the playbook will error, as shown
in the following screenshot:

Because of this side effect, it is best to not exit the debugger early, and
instead issue a continue command when your debugging is finished.

Debugging the action plugins
Some modules are actually action plugins. These are tasks that will execute
some code locally before transporting code to the remote host. Some example
action plugins include copy, fetch, script, and template. The source to these
plugins can be found in plugins/action/. Each plugin will have its own file in
this directory that can be edited to have breakpoints inserted in order to debug
the code that's executed, prior to (or in lieu of) sending code to the remote
host. Debugging these is typically done with pdb, since most of the code is
executed locally.

Summary
Ansible is a piece of software, and software breaks; it's not a matter of if, but
when. Invalid input, improper assumptions, and unexpected environments are
all things that can lead to a frustrating situation when tasks and plays are not
performing as expected. Introspection and debugging are troubleshooting
techniques that can quickly turn frustration into elation when a root cause is
discovered.

In this chapter, we learned about how to get Ansible to log its actions to a
file, and how to change the verbosity level of Ansible's output. We then
learned how to inspect variables to ensure their values are in line with your
expectations, before we moved on to debugging Ansible code in detail.
Furthermore, we walked through the process of inserting breakpoints into
core Ansible code, and executed both local and remote Python debugging
sessions using standard Python tools.

In the next chapter, we will learn how to extend the functionality of Ansible
by writing our own modules, plugins, and inventory sources.

Extending Ansible
It must be said that Ansible takes the "kitchen sink" approach to functionality
and tries to provide, out of the box, every piece of functionality you might
ever need. There are over 2,000 modules available for use within Ansible at
the time of writing—1,200 more than when the last edition of this book was
published! In addition to these, there is a rich plugin and filter architecture
with numerous callback plugins, lookup plugins, filter plugins, and dynamic
inventory plugins included.

In spite of this, there will always be cases where Ansible doesn't quite
perform the tasks required, especially in large and complex environments, or
ones where bespoke in-house systems have been developed. Luckily, the
design of Ansible, coupled with its open source nature, makes it easy for
anyone to extend it by developing their own features. It is also easy to
contribute code back to the wider community, which in turn can help others
to adopt Ansible more easily.

This chapter will explore the following ways in which new capabilities can be
added to Ansible:

Developing modules
Developing plugins
Developing dynamic inventory plugins
Contributing code to the Ansible project

Technical requirements
Check out the following video to see the Code in Action:

http://bit.ly/2OpCThn

http://bit.ly/2OpCThn

Developing modules
Modules are the workhorse of Ansible. They provide just enough abstraction
so that playbooks can be stated simply and clearly. There are over 100
modules maintained by the core Ansible development team, covering clouds,
commands, databases, files, networks, packaging, source control, system,
utilities, web infrastructure, and so on. In addition, there are nearly 2,000
other modules maintained by community contributors that expand
functionality in many of these categories. The real magic happens inside the
module code, which takes in the arguments passed to it and works to
establish the desired outcome.

Modules in Ansible are the pieces of code that get transported to the remote
host to be executed. They can be written in any language that the remote host
can execute; however, Ansible provides some very useful shortcuts for
writing modules in Python.

The basic module construct
A module exists to satisfy a need—the need to do a piece of work on a host.
Modules usually, but not always, expect input, and will return some sort of
output. Modules also strive to be idempotent, allowing the rerunning of the
module over and over again without having a negative impact. In Ansible, the
input is in the form of command-line arguments to the module, and the output
is delivered as JSON to STDOUT.

Input is generally provided in the space-separated key=value syntax, and it's up
to the module to deconstruct these into usable data. If you're using Python,
there are convenience functions to manage this, and if you're using a different
language, then it is up to the module code to fully process the input.

The output is JSON formatted. Convention dictates that in a successful
scenario, the JSON output should have at least one key, changed, which is a
Boolean, to indicate whether the module execution resulted in a change.
Additional data can be returned as well, which may be useful to define
specifically what changed, or provide important information back to the
playbook for later use. Additionally, host facts can be returned in the JSON
data to automatically create host variables based on the module execution
results. We will see more on this later, in the section entitled Providing fact
data.

Custom modules
Ansible provides an easy mechanism to utilize custom modules other than
those that come with Ansible. As we learned in Chapter 1, The System
Architecture and Design of Ansible, Ansible will search many locations to
find a requested module. One such location, and indeed the first location, is
the library/ subdirectory of the path where the top-level playbook resides.
This is where we will place our custom module so that we can use it in our
example playbook.

Modules can also be embedded within roles to deliver the added functionality
that a role may depend upon. These modules are only available to the role
that contains it or any other roles or tasks executed after the role containing
the module. To deliver a module with a role, place the module in the library/
subdirectory of the role's root.

Example – Simple module
To demonstrate the ease of writing Python-based modules, let's create a
simple module. The purpose of this module will be to remotely copy a source
file to a destination file, a simple task that we can build up from. To start our
module, we need to create the module file. For easy access to our new
module, we'll create the file in the library/ subdirectory of the working
directory we've already been using. We'll call this module remote_copy.py, and
to start it off, we'll need to put in a sha-bang line to indicate that this module is
to be executed with Python:

#!/usr/bin/python

For Python-based modules, the convention is to use /usr/bin/python as the
listed executable. When executed on a remote system, the configured Python
interpreter for the remote host is used to execute the module, so fret not if
your Python doesn't exist in this path. Next, we'll import a Python library
we'll use later in the module, called shutil:

import shutil

Now we're ready to create our main function. The main function is essentially
the entry point to the module, where the arguments to the module will be
defined and where the execution will start. When creating modules in Python,
we can take some shortcuts in this main function to bypass a lot of boilerplate
code and get straight to the argument definitions.

We do this by creating an AnsibleModule object and giving it an argument_spec
dictionary for the arguments:

def main():

 module = AnsibleModule(

 argument_spec = dict(

 source=dict(required=True, type='str'),

 dest=dict(required=True, type='str')

)

)

In our module, we're providing two arguments. The first argument is source,
which we'll use to define the source file for the copy. The second argument is
dest, the destination for the copy. Both of these arguments are marked as
required, which will raise an error when executed if one of the two is not
provided. Both arguments are of the type string. The location of the
AnsibleModule class has not yet been defined, as that happens later in the file.

With a module object at our disposal, we can now create the code that will do
the actual work on the remote host. We'll make use of shutil.copy and our
provided arguments to accomplish the copy:

 shutil.copy(module.params['source'],

 module.params['dest'])

The shutil.copy function expects a source and a destination, which we've
provided by accessing module.params. The module.params dictionary holds all of
the parameters for the module. Having completed the copy, we are now ready
to return the results to Ansible. This is done via another AnsibleModule method,
exit_json. This method expects a set of key=value arguments and will format it
appropriately for a JSON return. Since we're always performing a copy, we
will always return a change for simplicity's sake:

 module.exit_json(changed=True)

This line will exit the function, and thus the module. This function assumes a
successful action and will exit the module with the appropriate return code
for success: 0. We're not done with our module's code though; we still have to
account for the AnsibleModule location. This is where a bit of magic happens,
where we tell Ansible what other code to combine with our module to create
a complete work that can be transported:

from ansible.module_utils.basic import *

That's all it takes! That one line gets us access to all of the basic module_utils, a
decent set of helper functions and classes. There is one last thing we should
put into our module: a couple of lines of code telling the interpreter to
execute the main() function when the module file is executed:

if __name__ == '__main__':

 main()

Now our module file is complete and we can test it with a playbook. We'll
call our playbook simple_module.yaml and store it in the same directory as the
library/ directory, where we've just written our module file. We'll run the play
on localhost for simplicity's sake and use a couple of filenames in /tmp for the
source and destination. We'll also use a task to ensure that we have a source
file to begin with:

- name: test remote_copy module

 hosts: localhost

 gather_facts: false

 tasks:

 - name: ensure foo

 file:

 path: /tmp/rcfoo

 state: touch

 - name: do a remote copy

 remote_copy:

 source: /tmp/rcfoo

 dest: /tmp/rcbar

To run this playbook, we'll reference our mastery-hosts file. If the remote_copy
module file is written to the correct location, everything will work just fine,
and the screen output will look as follows:

Our first task touches the /tmp/rcfoo path to ensure that it exists, and then our
second task makes use of remote_copy to copy /tmp/rcfoo to /tmp/rcbar. Both tasks
are successful, resulting in a change each time.

Documenting a module
No module should be considered complete unless it contains documentation
regarding how to operate it. Documentation for a module exists within the
module itself, in special variables called DOCUMENTATION, EXAMPLES, and RETURN.

The DOCUMENTATION variable contains a specially formatted string describing the
module name, the version that was added to Ansible (if it is in Ansible
proper), a short description of the module, a longer description, a description
of the module arguments, author and license information, additional
requirements, and any extra notes useful to users of the module. Let's add a
DOCUMENTATION string to our module under the existing import shutil statement:

import shutil

DOCUMENTATION = '''

module: remote_copy

version_added: future

short_description: Copy a file on the remote host

description:

 - The remote_copy module copies a file on the remote host from a given source to a provided destination.

options:

 source:

 description:

 - Path to a file on the source file on the remote host

 required: True

 dest:

 description:

 - Path to the destination on the remote host for the copy

 required: True

author:

 - Jesse Keating

'''

The format of the string is essentially YAML, with some top-level keys
containing hash structures within it (the same as the options key). Each option
has sub-elements to describe the option, indicate whether the option is
required, list any aliases for the option, list static choices for the option, or
indicate a default value for the option. With this string saved to the module,
we can test our formatting to ensure that the documentation will render
correctly. This is done via the ansible-doc tool, with an argument to indicate
where to search for the modules. If we run it from the same place as our

playbook, the command will be ansible-doc -M library/ remote_copy, and the
output will be as follows:

In this example, I've piped the output into cat to prevent the pager from
hiding the execution line. Our documentation string appears to be formatted
correctly and provides the user with important information regarding the
usage of the module.

The EXAMPLES string is used to provide one or more example uses of the
module, snippets of the task code that you would use in a playbook. Let's add
an example task to demonstrate the usage. This variable definition
traditionally goes after the DOCUMENTATION definition:

EXAMPLES = '''

Example from Ansible Playbooks

- name: backup a config file

 remote_copy:

 source: /etc/herp/derp.conf

 dest: /root/herp-derp.conf.bak

'''

With this variable defined, our ansible-doc output will now include the
example, as we can see in the following screenshot:

The last documentation variable, RETURN, is a relatively new feature of module
documentation. This variable is used to describe the return data from a
module execution. Return data is often useful as a registered variable for later
usage, and having documentation of what return data to expect can aid
playbook development. Our module doesn't have any return data yet; so,

before we can document any some, we first have to add return data. This can
be done by modifying the module.exit_json line to add more information. Let's
add the source and dest data to the return output:

 module.exit_json(changed=True, source=module.params['source'],

 dest=module.params['dest'])

Rerunning the playbook will show extra data being returned, as shown in the
following screenshot:

Looking closely at the return data, we can see more data than we put in our
module. This is actually a bit of a helper functionality within Ansible; when a
return dataset includes a dest variable, Ansible will gather more information
about the destination file. The extra data gathered is gid (group ID), group
(group name), mode (permissions), uid (owner ID), owner (owner name), size,
and state (file, link, or directory). We can document all of these return items
in our RETURN variable, which is added after the EXAMPLES variable. Everything
between the two sets of single quotes (''') is returned – thus, this first part

returns the file paths and ownership:

RETURN = '''

source:

 description: source file used for the copy

 returned: success

 type: string

 sample: "/path/to/file.name"

dest:

 description: destination of the copy

 returned: success

 type: string

 sample: "/path/to/destination.file"

gid:

 description: group ID of destination target

 returned: success

 type: int

 sample: 502

group:

 description: group name of destination target

 returned: success

 type: string

 sample: "users"

uid:

 description: owner ID of destination target

 returned: success

 type: int

 sample: 502

owner:

 description: owner name of destination target

 returned: success

 type: string

 sample: "fred"

Continuing this part of the module definition file, this section returns the
details about the file size, state, and permissions:

mode:

 description: permissions of the destination target

 returned: success

 type: int

 sample: 0644

size:

 description: size of destination target

 returned: success

 type: int

 sample: 20

state:

 description: state of destination target

 returned: success

 type: string

 sample: "file"

'''

Each returned item is listed with a description, the cases when the item would
be in the return data, the type of item it is, and a sample of the value. The

RETURN string is essentially repeated verbatim in the ansible-doc output, as
shown in the following (abbreviated) example:

In this way, we have built up a module that contains its own documentation –
incredibly useful for others if we are contributing it to the community, or
even for ourselves when we come back to it after a period of time.

Providing fact data
Similar to data returned as part of a module exit, a module can directly create
facts for a host by returning data in a key named ansible_facts. Providing facts
directly from a module eliminates the need to register the return of a task with
a subsequent set_fact task. To demonstrate this usage, let's modify our module
to return the source and dest data as facts. Because these facts will become top-
level host variables, we'll want to use more descriptive fact names than source
and dest – replace the current module.exit_json line in our module with the code
listed:

 facts = {'rc_source': module.params['source'],

 'rc_dest': module.params['dest']}

 module.exit_json(changed=True, ansible_facts=facts)

We'll also add a task to our playbook to use one of the facts in a debug
statement:

 - name: show a fact

 debug:

 var: rc_dest

Now, running the playbook will show the new return data plus the use of the
variable:

If our module does not return facts (and our previous version of remote_copy.py
didn't), we will have to register the output and use set_fact to create the fact
for us, as shown in the following code:

 - name: do a remote copy

 remote_copy:

 source: /tmp/rcfoo

 dest: /tmp/rcbar

 register: mycopy

 - name: set facts from mycopy

 set_fact:

 rc_dest: "{{ mycopy.dest }}"

Although it is useful to be able to do this, when designing our own modules,

it is better to have the module define the facts required. If this is not done,
then the previous register and the set_fact code would need to be repeated for
every use of our module in a playbook!

The check mode
Since the early days of its existence, Ansible has supported check mode, a
mode of operation that will pretend to make changes to a system without
actually changing the system. Check mode is useful for testing whether a
change will actually happen, or whether a system state has drifted since the
last Ansible run. Check mode depends on modules to support it and return
data as if it had actually completed the change. Supporting check mode in our
module requires two changes; the first is to indicate that the module supports
check mode, and the second is to detect when check mode is active and return
data before execution.

Supporting check mode
To indicate that a module supports check mode, an argument has to be set
when creating the module object. This can be done before or after the
argument_spec variable is defined in the module object; here, we will do it after
it is defined:

 module = AnsibleModule(

 argument_spec = dict(

 source=dict(required=True, type='str'),

 dest=dict(required=True, type='str')

),

 supports_check_mode=True

)

If you're modifying your existing code, don't forget to add the comma after
the argument_spec dictionary definition, as shown in the preceding code.

Handling check mode
Detecting when check mode is active is very easy. The module object will
have a check_mode attribute, which will be set to Boolean value true when check
mode is active. In our module, we want to detect whether check mode is
active before performing the copy. We can simply move the copy action into
an if statement to avoid copying when check mode is active. No further
changes to the module are necessary beyond this:

 if not module.check_mode:

 shutil.copy(module.params['source'],

 module.params['dest'])

Now, we can run our playbook and add the -C argument to our execution.
This argument engages check mode. We'll also test to ensure that the
playbook did not actually create and copy the files. Let's take a look at the
following screenshot:

Although the module output looks as though it created and copied files, we
can see that the files referenced did not exist before execution and still do not
exist after execution.

Developing plugins
Plugins are another way of extending or modifying the functionality of
Ansible. While modules are executed as tasks, plugins are utilized in a
variety of other places. Plugins are broken down into a few types, based on
where they would plug into the Ansible execution. Ansible ships some
plugins for each of these areas, and end users can create their own to extend
the functionality of these specific areas.

Connection-type plugins
Any time Ansible makes a connection to a host to perform a task, a
connection plugin is used. Ansible ships with a few connection plugins,
including ssh, docker, chroot, local, and smart. Additional connection
mechanisms can be utilized by Ansible to connect to remote systems by
creating a connection plugin, which may be useful if faced with connecting to
some new type of system, such as a network switch, or perhaps your
refrigerator some day. Creating connection plugins is a bit beyond the scope
of this book; however, the easiest way to get started is to read through the
existing plugins that ship with Ansible and pick one to modify as necessary.
The existing plugins can be found in plugins/connection/ wherever the Ansible
Python libraries are installed on your system, such as /usr/lib/python2.7/site-
packages/ansible/plugins/connection on my system.

Shell plugins
Much like connection plugins, Ansible makes use of shell plugins to execute
things in a shell environment. Each shell has subtle differences that Ansible
cares about in order to properly execute commands, redirect output, discover
errors, and other such interactions. Ansible supports a number of shells,
including sh, csh, fish, and powershell. We can add more shells by implementing
a new shell plugin.

Lookup plugins
Lookup plugins are how Ansible accesses outside data sources from the host
system and implements language features, such as looping constructs (loop or
with_*). A lookup plugin can be created to access data from an existing data
store, or to create a new looping mechanism. The existing lookup plugins can
be found in plugins/lookup/. Lookup plugins can be added to introduce new
ways of looping over content, or for looking up resources in external systems.

Vars plugins
Constructs to inject variable data exist in the form of vars plugins. Data such
as host_vars and group_vars are implemented via plugins. While it's possible to
create new variable plugins, most often, it is better to create a custom
inventory source or a fact module instead.

Fact-caching plugins
Recently (as of version 1.8), Ansible gained the ability to cache facts between
playbook runs. Where facts are cached depends on the configured cache
plugin that is used. Ansible includes plugins to cache facts in memory (not
actually cached between runs): memcached, redis, and jsonfile. Creating a fact-
caching plugin can enable additional caching mechanisms.

Filter plugins
While Jinja2 includes a number of filters, Ansible has made filters pluggable
to extend the Jinja2 functionality. Ansible includes a number of filters that
are useful for Ansible operations, and users of Ansible can add more.
Existing plugins can be found in plugins/filter/.

To demonstrate the development of a filter plugin, we will create a simple
filter plugin to do a silly thing to text strings. We will create a filter that will
replace any occurrence of the words the cloud with the string somebody else's
computer. We'll define our filter in a file within a new directory, filter_plugins/,
in our existing working directory. The name of the file doesn't matter, as we'll
define the name of the filter within the file; so, let's name our file
filter_plugins/sample_filter.py.

First, we need to define the function that will perform the translation, and
provide the code to translate the strings:

def cloud_truth(a):

 return a.replace("the cloud", "somebody else's computer")

Next, we'll need to construct a FilterModule object and define our filter within
it. This object is what Ansible will load, and Ansible expects there to be a
filters function within the object that returns a set of filter names to functions
within the file:

class FilterModule(object):

 '''Cloud truth filters'''

 def filters(self):

 return {'cloud_truth': cloud_truth}

Now we can use this filter in a playbook, which we'll call simple_filter.yaml:

- name: test cloud_truth filter

 hosts: localhost

 gather_facts: false

 vars:

 statement: "I store my files in the cloud"

 tasks:

 - name: make a statement

 debug:

 msg: "{{ statement | cloud_truth }}"

Now, let's run our playbook and see our filter in action:

Our filter worked, and it turned the words the cloud into somebody else's computer.
This is a silly example without any error handling, but it clearly demonstrates
our capability to extend Ansible and Jinja2's filter capabilities.

Although the name of the file containing a filter definition can be whatever the developer
wants, a best practice is to name it after the filter itself so that it can easily be found in
the future, potentially by other collaborators. This example did not follow this, to
demonstrate that the file name is not attached to the filter name.

Callback plugins
Callbacks are places in Ansible execution that can be plugged into for added
functionality. There are expected callback points that can be registered
against to trigger custom actions at those points. Here is a list of possible
points to trigger functionality at the time of writing:

v2_on_any

v2_runner_on_failed

v2_runner_on_ok

v2_runner_on_skipped

v2_runner_on_unreachable

v2_runner_on_no_hosts

v2_runner_on_async_poll

v2_runner_on_async_ok

v2_runner_on_async_failed

v2_runner_on_file_diff

v2_playbook_on_start

v2_playbook_on_notify

v2_playbook_on_no_hosts_matched

v2_playbook_on_no_hosts_remaining

v2_playbook_on_task_start

v2_playbook_on_cleanup_task_start

v2_playbook_on_handler_task_start

v2_playbook_on_vars_prompt

v2_playbook_on_setup

v2_playbook_on_import_for_host

v2_playbook_on_not_import_for_host

v2_playbook_on_play_start

v2_playbook_on_stats

v2_on_file_diff

v2_playbook_on_include

v2_runner_item_on_ok

v2_runner_item_on_failed

v2_runner_item_on_skipped

v2_runner_retry

As an Ansible run reaches each of these states, any plugins that have code to
run at these points will be executed. This provides the tremendous ability to
extend Ansible without having to modify the base code.

Callbacks can be utilized in a variety of ways: to change how things are
displayed on screen, to update a central status system of progress, to
implement a global locking system, or nearly anything imaginable. It's the
most powerful way to extend the functionality of Ansible. To demonstrate
our ability to develop a callback plugin, we'll create a simple plugin that will
print something silly on the screen as a playbook executes:

1. First, we'll need to make a new directory to hold our callback. The
location Ansible will look for is callback_plugins/. Unlike the filter plugin
earlier, we do need to name our callback plugin file carefully, as it will
also have to be reflected in an ansible.cfg file.

2. We'll name ours callback_plugins/shrug.py. Inside this file, we'll need to
create a CallbackModule class, subclassed from CallbackModule, defined in the
default callback plugin found in ansible.plugins.callback.default, since we
only need to change one aspect of the normal output.

3. Within this class, we define variable values to indicate that it is a 2.0
version callback, and that it is an stdout type of callback, finally, that it
has the name shrug.

4. Also within this class, we define one or more of the callback points we'd
like to plug into in order to make something happen.

5. We only have to define the points we want to plug in. In our case, we'll
plug into the v2_on_any point so that our plugin runs at every callback
spot:

from ansible.plugins.callback import default

class CallbackModule(default.CallbackModule):

 CALLBACK_VERSION = 2.0

 CALLBACK_TYPE = 'stdout'

 CALLBACK_NAME = 'shrug'

 def v2_on_any(self, *args, **kwargs):

 msg = '\xc2\xaf_(\xe3\x83\x84)_/\xc2\xaf'

 self._display.display(msg.decode('utf-8') * 8)

6. As this callback is stdout_callback, we'll need to create an ansible.cfg file

and, within it, indicate that the shrug stdout callback should be used. The
ansible.cfg file can be found in /etc/ansible/ or in the same directory as the
playbook:

[defaults]

stdout_callback = shrug

7. That's all we have to write into our callback. Once it's saved, we can
rerun our previous playbook, which exercised our sample_filter, but this
time we'll see something different on the screen:

This is very silly, but it demonstrates the ability to plug into various points of
a playbook execution. We chose to display a series of shrugs on screen, but
we could have just as easily interacted with some internal audit and control
system to record actions, or to report progress to an IRC or Slack channel.

Action plugins
Action plugins exist to hook into the task construct without actually causing
a module to be executed, or to execute code locally on the Ansible host
before executing a module on the remote host. A number of action plugins
are included with Ansible and can be found in plugins/action/. One such action
plugin is the template plugin used in place of a template module. When a
playbook author writes a template task, that task will actually call the template
plugin to do the work. The plugin, among other things, will render the
template locally before copying the content to the remote host. Because
actions have to happen locally, the work is done by an action plugin. Another
action plugin we should be familiar with is the debug plugin, which we've used
heavily in this book to print content. Creating a custom action plugin is useful
when trying to accomplish both local work and remote work in the same task.

Distributing plugins
Much like distributing custom modules, there are standard places to store
custom plugins alongside playbooks that expect to use plugins. The default
locations for plugins are the locations that are shipped with the Ansible code
install, subdirectories within ~/.ansible/plugins/, and subdirectories of the
project root (the place where the top-level playbook is stored). Plugins can be
distributed within the same subdirectories of a role as well. To utilize plugins
from any other location, we need to define the location to find the plugin for
the plugin type in an ansible.cfg file.

When distributing plugins inside the project root, each plugin type gets its
own top-level directory:

action_plugins/

cache_plugins/

callback_plugins/

connection_plugins/

shell_plugins/

lookup_plugins/

vars_plugins/

filter_plugins/

As with other Ansible constructs, the first plugin with a given name found
will be used, and just as with modules, the paths relative to the project root
are checked first, allowing a local override of an existing plugin. Simply
place the filter file into the appropriate subdirectory, and it will automatically
get used when referenced.

Developing dynamic inventory
plugins
Inventory plugins are bits of code that will create inventory data for an
Ansible execution. In many environments, the simple ini file-style inventory
source and variable structure is not sufficient to represent the actual
infrastructure being managed. In such cases, a dynamic inventory source is
desired, one that will discover the inventory and data at runtime at every
execution of Ansible. A number of these dynamic sources ship with Ansible,
primarily to operate Ansible with the infrastructure built into one cloud
computing platform or another. A short, incomplete list of dynamic inventory
plugins that ship with Ansible (there are now over 20) includes the following:

apache-libcloud

cobbler

console_io

digital_ocean

docker

ec2

gce

libvirt_lxc

linode

openshift

openstack

rax

vagrant

vmware

windows_azure

An inventory plugin is essentially an executable script. Ansible calls the
script with set arguments (--list or --host <hostname>) and expects JSON
formatted output on STDOUT. When the --list argument is provided, Ansible
expects a list of all the groups to be managed. Each group can list host

membership, child group membership, and group variable data. When the
script is called with the --host <hostname> argument, Ansible expects host-
specific data to be returned (or an empty JSON dictionary).

Using a dynamic inventory source is easy. A source can be used directly by
referring to it with the -i (--inventory-file) option to ansible and ansible-playbook,
by putting the plugin file inside the directory referred to by either the
inventory path in ansible.cfg.

Before creating an inventory plugin, we must understand the expected format
for when --list or --host is used with our script.

Listing hosts
When the --list argument is passed to an inventory script, Ansible expects
the JSON output data to have a set of top-level keys. These keys are named
for the groups in the inventory. Each group gets its own key. The structure
within a group key varies depending on what data needs to be represented in
the group. If a group just has hosts and no group-level variables, the data
within the key can simply be a list of host names. If the group has variables
or children (a group of groups), then the data needs to be a hash, which can
have one or more keys named hosts, vars, or children. The hosts and children
subkeys have a list value, a list of the hosts that exist in the group, or a list of
the child groups. The vars subkey has a hash value, where each variable's
name and value is represented by a key and value.

Listing host variables
When the --host <hostname> argument is passed to an inventory script, Ansible
expects the JSON output data to simply be a hash of the variables, where
each variable name and value is represented by a key and a value. If there are
no variables for a given host, an empty hash is expected.

Simple inventory plugin
To demonstrate developing an inventory plugin, we'll create one that simply
prints the same host data we've been using in our mastery-hosts file. Integrating
with a custom asset management system or an infrastructure provider is a bit
beyond the scope of this book, so we'll simply code the systems into the
plugin itself. We'll write our inventory plugin to a file in the top level of our
project root named mastery-inventory.py and make it executable. We'll use
Python for this file, to handle execution arguments and JSON formatting with
ease:

1. First, we'll need to add a sha-bang line to indicate that this script is to be
executed with Python:

#!/usr/bin/env python

2. Next, we'll need to import a couple of Python modules that we will need
later in our plugin:

import json

import argparse

3. Now we'll create a Python dictionary to hold all of our groups. Some of
our groups just have hosts, while others have variables or children. We'll
format each group accordingly:

inventory = {}

inventory['web'] = {'hosts': ['mastery.example.name'],

 'vars': {'http_port': 80,

 'proxy_timeout': 5}}

inventory['dns'] = {'hosts': ['backend.example.name']}

inventory['database'] = {'hosts': ['backend.example.name'],

 'vars': {'ansible_ssh_user': 'database'}}

inventory['frontend'] = {'children': ['web']}

inventory['backend'] = {'children': ['dns', 'database'],

 'vars': {'ansible_ssh_user': 'blotto'}}

inventory['errors'] = {'hosts': ['scsihost']}

inventory['failtest'] = {'hosts': ["failer%02d" % n for n in

 range(1,11)]}

4. To create our failtest group (you'll see this in action in the next chapter),

which in our inventory file will be represented as failer[01:10], we use a
Python list comprehension to produce the list for us, formatting the
items in the list just the same as our ini-formatted inventory file. Every
other group entry is self-explanatory.

5. Our original inventory also had an all group variable, which provided a
default variable, ansible_ssh_user, to all groups (which groups could
override), which we'll define here and make use of later in the file:

allgroupvars = {'ansible_ssh_user': 'otto'}

6. Next, we need to enter the host-specific variables in their own
dictionary. Only one node in our original inventory had host-specific
variables – we'll also add a new host, scsihost, to develop our example
further:

hostvars = {}

hostvars['mastery.example.name'] = {'ansible_ssh_host': '192.168.10.25'}

hostvars['scsihost'] = {'ansible_ssh_user': 'jfreeman'}

7. With all our data defined, we can now move on to the code that will
handle argument parsing. This is done via the argparse module we
imported earlier in the file:

parser = argparse.ArgumentParser(description='Simple Inventory')

parser.add_argument('--list', action='store_true', help='List all hosts')

parser.add_argument('--host', help='List details of a host')

args = parser.parse_args()

8. After parsing the arguments, we can deal with either the --list or --host
actions. If a list is requested, we simply print a JSON representation of
our inventory. This is where we'll take into account the allgroupvars data;
the default ansible_ssh_user for each group. We'll loop through each
group, create a copy of the allgroupvars data, update that data with any
data that may already exist in the group, then replace the group's
variable data with the newly updated copy. Finally, we'll print out the
end result:

if args.list:

 for group in inventory:

 ag = allgroupvars.copy()

 ag.update(inventory[group].get('vars', {}))

 inventory[group]['vars'] = ag

 print(json.dumps(inventory))

9. Finally, we'll handle the --host action by building up a dictionary of all
variables applicable to the host passed to this script using an
approximation of the precedence order used in Ansible when parsing an
ini format inventory. This code is iterative, and the nested loops would
not be efficient in a production environment, but for the purposes of this
example, it serves. The output is the JSON formatted variable data for
the provided host, or an empty hash if there is no host-specific variable
data for the provided host:

elif args.host:

 hostfound = False

 agghostvars = allgroupvars.copy()

 for group in inventory:

 if args.host in inventory[group].get('hosts', {}):

 hostfound = True

 for childgroup in inventory:

 if group in inventory[childgroup].get('children', {}):

 agghostvars.update(inventory[childgroup].get('vars', {}))

 for group in inventory:

 if args.host in inventory[group].get('hosts', {}):

 hostfound = True

 agghostvars.update(inventory[group].get('vars', {}))

 if hostvars.get(args.host, {}):

 hostfound = True

 agghostvars.update(hostvars.get(args.host, {}))

 if not hostfound:

 agghostvars = {}

 print(json.dumps(agghostvars))

Now our inventory is ready to test! We can execute it directly and pass the --
help argument we get for free using argparse. This will show us the usage of
our script based on the argparse data we provided earlier in the file:

Don't forget to make the dynamic inventory script executable – for example: chmod +x
mastery-inventory.py.

If we pass --list, we'll get the output of all our groups, along with all the
hosts in each group and all associated inventory variables:

Similarly if we run this Python script with the --host argument and a
hostname we know is in the inventory, we'll see the host variables for the
hostname that was passed. If we pass a group name, nothing should be
returned, as the script only returns data for valid individual hostnames:

Now we're ready to use our inventory file with Ansible. Let's make a new
playbook (inventory_test.yaml) to display the hostname and the ssh username
data:

- name: test the inventory

 hosts: all

 gather_facts: false

 tasks:

 - name: hello world

 debug:

 msg: "Hello world, I am {{ inventory_hostname }}.

 My username is {{ ansible_ssh_user }}"

There is one more thing we have to do before we can use our new inventory
plugin. By default (and as a security feature), most of Ansible's inventory
plugins are disabled. To ensure our dynamic inventory script will run, open
the applicable ansible.cfg file in an editor and look for the enable_plugins line in
the [inventory] section. As a minimum, it should look like the following
(though you may choose to enable more plugins if you wish):

[inventory]

enable_plugins = ini, script

To use our new inventory plugin with this playbook, we simply refer to the
plugin file with the -i argument. Because we are using the all hosts group in
our playbook, we'll also limit the run to a few groups to save screen space:

As you can see, we get the hosts we expect, and we get the default ssh user for
master.example.name. backend.example.name and scsihost each show their host-
specific ssh username.

Optimizing script performance
With this inventory script, when Ansible starts, it will execute the script once
with --list to gather the group data. Then, Ansible will execute the script
again with --host <hostname> for each host it discovered in the first call. With
our script, this takes very little time, as there are very few hosts, and our
execution is very fast. However, in an environment with a large number of
hosts or a plugin that takes a while to run, gathering the inventory data can be
a lengthy process. Fortunately, there is an optimization that can be made in
the return data from a --list call that will prevent Ansible from rerunning the
script for every host. The host-specific data can be returned all at once inside
the group data return, inside a top-level key named _meta, which has a subkey
named hostvars that contains a hash of all the hosts that have host variables
and the variable data itself. When Ansible encounters a _meta key in the --list
return, it'll skip the --host calls and assume that all of the host-specific data
was already returned, potentially saving a significant amount of time! Let's
modify our inventory script to return host variables inside _meta, and create an
error condition inside the --host option to show that --host is not being called:

1. First, we'll add the _meta key to the inventory dictionary after all of the
hostvars have been built up using the same algorithm as before, and just
before argument parsing:

hostvars['scsihost'] = {'ansible_ssh_user': 'jfreeman'}

agghostvars = dict()

for outergroup in inventory:

 for grouphost in inventory[outergroup].get('hosts', {}):

 agghostvars[grouphost] = allgroupvars.copy()

 for group in inventory:

 if grouphost in inventory[group].get('hosts', {}):

 for childgroup in inventory:

 if group in inventory[childgroup].get('children', {}):

 agghostvars[grouphost].update(inventory[childgroup].get('vars', {}))

 for group in inventory:

 if grouphost in inventory[group].get('hosts', {}):

 agghostvars[grouphost].update(inventory[group].get('vars', {}))

 agghostvars[grouphost].update(hostvars.get(grouphost, {}))

inventory['_meta'] = {'hostvars': agghostvars}

parser = argparse.ArgumentParser(description='Simple Inventory')

Next, we'll change the --host handling to raise an exception:

elif args.host:

 raise StandardError("You've been a bad boy")

2. Now, we'll rerun the inventory_test.yaml playbook to ensure that
we're still getting the right data:

3. Just to be sure, we'll manually run the inventory plugin with the --hosts
argument to show the exception:

With this optimization, our simple playbook using our inventory module now
runs nearly twice as fast, just because of the gained efficiency in inventory
parsing.

Contributing to the Ansible project
Not all modifications need to be for local site requirements. Ansible users
will often identify an enhancement that could be made to the project that
others would benefit from. These enhancements can be contributed back to
the Ansible project. Contributions could be in the form of updates to an
existing module or core Ansible code, updates to documentation, new
modules or plugins, or simply testing proposed contributions from other
community members.

Contribution submissions
The Ansible project uses GitHub (https://github.com) to manage code
repositories, issues, and other aspects of the project. The Ansible organization
(https://github.com/ansible) is where the code repositories can be found. The
main repository is the ansible repository (https://github.com/ansible/ansible),
where the core Ansible code, the modules, and the documentation can be
found. This is the repository that should be cloned in order to develop a
contribution.

The Ansible project uses a development branch named devel instead of the traditional
name of master. Most contributions target the devel branch, or a stable release branch.

https://github.com
https://github.com/ansible
https://github.com/ansible/ansible

The Ansible repository
The Ansible repository has a number of files and folders at its root. The files
are mostly high-level documentation files, code licenses, or continuous
integration test platform configurations.

Of the directories, a few are worth noting:

bin: Source for the various ansible core executables
contrib: Source for contributed inventory and vault plugins
docs: Source for API documentation, the https://docs.ansible.com website,
and the main pages
hacking: Guides and utilities for hacking on the Ansible source
lib/ansible: The core Ansible source code
test: Unit and integration test code

Contributions to Ansible will likely occur in one of those folders.

https://docs.ansible.com

Executing tests
Before any submission can be accepted by Ansible, the change must pass
tests. These tests fall into three categories: unit tests, integration tests, and
code-style tests. Unit tests cover very narrow aspects of source code
functions, while integration tests take a more holistic approach and ensure the
desired functionality happens. Code-style tests examine the syntax used, as
well as whitespace and other style aspects.

Before any tests can be executed, the shell environment must be prepared to
work with the Ansible code checkout. A shell environment file exists to set
the required variables, which can be activated with this command:

 $ source ./hacking/env-setup

Ensuring tests are passing before modifications are made can save a lot of
debugging time later.

Unit tests
All of the unit tests are located within the directory tree starting at test/units.
These tests should all be self-contained and do not require access to external
resources. Running the tests is as simple as executing make tests from the
root of the Ansible source checkout. This will test much of the code base,
including the module code.

Executing the tests may require the installation of additional software. When using a
Python virtualenv to manage Python software installations, it's best to create a new venv
to use for testing Ansible–one that does not have Ansible installed in it.

To target a specific set of tests to run, the pytest (sometimes accessed as
py.test) utility can be called directly, with a path provided to a directory or a
specific file to test. In this example, just the parsing unit tests are executed:

As can be seen in the screenshot, the py.test utility is running through the
defined unit tests and will report any errors it finds, aiding you greatly in

checking any code you might be planning to submit.

Integration tests
Ansible integration tests are tests designed to validate playbook functionality.
Testing is executed by playbooks as well, making things a bit recursive. The
tests are broken down into a few main categories:

Non-destructive
Destructive
Cloud
Windows
Network

A more detailed explanation of the test categories can be found in the
README.md file found at test/integration/README.md.

Many of the integration tests require ssh to the localhost to be functional. Be sure that ssh
works, ideally without a password prompt. Remote hosts can be used by altering the
inventory file used for tests (test/integration/inventory).

As with unit tests, individual integration tests can be executed, using the
ansible-test utility located at test/runner/ansible-test. This is particularly
important, as many of the integration tests require external resources, such as
computer cloud accounts. Each directory in test/integration/targets is a target
that can be tested individually. For example, to test ping functionality, use the
ping target:

Note there is even a test in this suite designed to fail—and that, at the end, we
see ok=7 and failed=0, meaning all tests passed. A large set of POSIX-
compatible non-destructive integration tests run by continuous integration
systems on proposed changes to Ansible can be executed with the following:

 $ test/runner/ansible-test integration -v posix/ci/

At the time of writing, a number of the posix/ci tests do not pass on macOS. Executing
these tests in a recent Fedora environment is recommended.

Code-style tests
A third category of Ansible tests is the code-style category. These tests
examine the syntax used in the Python files, ensuring a cohesive look across
the code base. The code style enforced is defined by PEP8, a style guide for
Python. More information is available in test/sanity/pep8/README.md. This style is
enforced via the pep8 make target. If there are no errors, this target does not
output any text; however, the return code can be verified. A return code of 0
means there were no errors:

Additional Python modules might be required to run these tests – the method for
installing these will vary from system to system, and could typically be through use of the
pip tool. On my CentOS 7 test system, I had to run the following command to be able to
run this test: sudo yum install python2-packaging python2-pycodestyle.

If a Python file does have a pep8 violation, the output will reflect the violation:

pep8 errors will indicate an error code, which can be looked up for detailed
explanations and guidance.

Making a pull request
With passing tests, a submission can be made. The Ansible project uses
GitHub pull requests to manage submissions. To create a pull request, your
changes must be committed and pushed to GitHub. Developers use a fork of
the Ansible repository under their own account to push proposed changes to.

Once pushed, a pull request can be opened using the GitHub website. This
will create the pull request, which will start continuous integration tests and
notify reviewers of a new submission. Further information about GitHub pull
requests can be found at https://help.github.com/categories/collaborating-with-issue
s-and-pull-requests/.

Once the pull request is open, reviewers will comment on the pull request,
either asking for more information, suggesting changes, or approving of the
change. For new module submissions, there is an extensive checklist to
follow, which can be found at http://docs.ansible.com/ansible/dev_guide/developing
_modules_checklist.html.

Submissions that are found acceptable and merged will be made generally
available in the next release of Ansible. The latest details about the Ansible
release process can be found at http://docs.ansible.com/ansible/dev_guide/developin
g_releases.html.

https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
http://docs.ansible.com/ansible/dev_guide/developing_modules_checklist.html
http://docs.ansible.com/ansible/dev_guide/developing_releases.html

Summary
Ansible is a great tool; however, sometimes, it doesn't offer all the
functionality you might desire. Not every bit of functionality is appropriate to
support the main project, nor is it possible to integrate with custom
proprietary data sources. For these reasons, there are facilities within Ansible
to extend its functionality. Creating and using custom modules is made easy
by the shared module base code. Many different types of plugins can be
created and used with Ansible to affect operations in a variety of ways.
Inventory sources beyond what Ansible supports can still be used with
relative ease and efficiency.

In this chapter, you learned about developing your own modules and
including them in your playbooks. You then learned about extending Ansible
through plugins, and we went into specific details about creating dynamic
inventory plugins. Finally, you learned how to contribute code back to the
Ansible project to enhance the code for everyone in the community. In
summary, you learned that, in all cases, there are mechanisms to provide
modules, plugins, and inventory sources alongside the playbooks and roles
that depend on the enhanced functionality, making it seamless to distribute.
This enables an almost infinite amount of expansion or customization of
Ansible to your requirements, and the ability to easily contribute these back
to the wider community if desired.

In Chapter 11, Infrastructure Provisioning, we will explore the use of Ansible
in creating the infrastructure to be managed.

Section 3: Orchestration with
Ansible
In this section, we will explore the real-world usage of Ansible to coordinate
and manage systems and services, whether on-premise or in the cloud.

The following chapters are included in this section:

Chapter 10, Minimizing Downtime with Rolling Deployments

Chapter 11, Infrastructure Provisioning

Chapter 12, Network Automation

Minimizing Downtime with Rolling
Deployments
Ansible is well-suited to the task of upgrading or deploying applications in a
live service environment. Of course, application deployments and upgrades
can be approached with a variety of different strategies. The best approach
depends on the application itself, the capabilities of the infrastructure the
application runs on, and any promised service level agreements with the users
of the application. Whatever the approach, it is vital that the application
deployment or upgrade is controlled, predictable, and repeatable, in order to
ensure that users experience a stable service while automated deployments
occur in the background. The last thing that anyone wants is an outage caused
by unexpected behavior from their automation tool; an automation tool
should be trustworthy, not an additional risk factor.

Although there is a myriad of choices, some deployment strategies are more
common than others, and in this chapter, we'll walk through a couple of the
more common ones. In doing so, we will showcase the Ansible features that
will be useful within those strategies. We'll also discuss a couple of other
deployment considerations that are common across both deployment
strategies. To achieve this, we will delve into the details of the following
subjects, in the context of a rolling Ansible deployment:

In-place upgrades
Expanding and contracting
Failing fast
Minimizing disruptive actions
Serializing single tasks

Technical requirements
Check out the following video to see the Code in Action:

http://bit.ly/2CGJvDp

http://bit.ly/2CGJvDp

In-place upgrades
The first type of deployment that we'll cover is in-place upgrades. This style
of deployment operates on an infrastructure that already exists, in order to
upgrade the existing application. This model is a traditional model that was
used when the creation of a new infrastructure was a costly endeavor, in
terms of both time and money.

A general design pattern to minimize the downtime during this type of
upgrade is to deploy the application across multiple hosts, behind a load
balancer. The load balancer will act as a gateway between users of the
application and the servers that run the application. Requests for the
application will come to the load balancer, and, depending on the
configuration, the load balancer will decide which backend server to direct
the requests to.

To perform a rolling in-place upgrade of an application deployed with this
pattern, each server (or a small subset of the servers) will be disabled at the
load balancer, upgraded, and then re-enabled to take on new requests. This
process will be repeated for the remaining servers in the pool, until all servers
have been upgraded. As only a portion of the available application servers are
taken offline to be upgraded, the application as a whole remains available for
requests. Of course, this assumes that an application can perform well with
mixed versions running at the same time.

Let's build a playbook to upgrade a fictional application. Our fictional
application will run on servers foo-app01 through foo-app08, which exist in the
foo-app group. These servers will have a simple website that's served via the
nginx web server, with the content coming from a foo-app Git repository,
defined by the foo-app.repo variable. A load balancer server, foo-lb, running the
haproxy software, will front these app servers.

In order to operate on a subset of our foo-app servers, we need to employ the
serial mode. This mode changes how Ansible will execute a play. By default,

Ansible will execute the tasks of a play across each host in the order that the
tasks are listed. Ansible executes each task of the play on every host before it
moves on to the next task in the play. If we were to use the default method,
our first task would remove every server from the load balancer, which would
result in the complete outage of our application. Instead, the serial mode lets
us operate on a subset, so that the application as a whole stays available, even
if some of the members are offline. In our example, we'll use a serial amount
of 2, in order to keep the majority of the application members online:

- name: Upgrade foo-app in place

 hosts: foo-app

 serial: 2

Ansible 2.2 introduced the concept of serial batches: a list of numbers that can increase
the number of hosts addressed serially each time through the play. This allows the size of
the hosts addressed to increase as the confidence increases. Where a batch of numbers is
provided to the serial keyword, the last number provided will be the size of any remaining
batch, until all hosts in the inventory have been completed.

Now, we can start to create our tasks. The first task will be to disable the host
from the load balancer. The load balancer runs on the foo-lb host; however,
we're operating on the foo-app hosts. Therefore, we need to delegate the task
by using the delegate_to task operator. This operator redirects where Ansible
will connect to in order to execute the task, but it keeps all of the variable
contexts of the original host. We'll use the haproxy module to disable the
current host from the foo-app backend pool:

 tasks:

 - name: disable member in balancer

 haproxy:

 backend: foo-app

 host: "{{ inventory_hostname }}"

 state: disabled

 delegate_to: foo-lb

With the host disabled, we can now update the foo-app content. We'll use the
git module to update the content path with the desired version, defined as foo-
version. We'll add a notify handler to this task to reload the nginx server if the
content update results in a change. This can be done every time, but we're
using this as an example usage of notify:

 - name: pull stable foo-app

 git:

 repo: "{{ foo-app.repo }}"

 dest: /srv/foo-app/

 version: "{{ foo-version }}"

 notify:

 - reload nginx

Our next step would be to re-enable the host in the load balancer; however, if
we did that task next, we'd put the old version back in place, as our notified
handler hasn't run yet. So, we need to trigger our handlers early, by way of
the meta: flush_handlers call, which you learned about in Chapter 9, Extending
Ansible:

 - meta: flush_handlers

Now, we can re-enable the host in the load balancer. We can just enable it
right away and rely on the load balancer to wait until the host is healthy
before sending requests to it. However, because we are running with a
reduced number of available hosts, we need to ensure that all of the
remaining hosts are healthy. We can make use of a wait_for task to wait until
the nginx service is once again serving connections. The wait_for module will
wait for a condition on either a port or a file path. In our example, we will
wait for port 80 and the condition that the port should be in. If it is started (the
default), that means it is accepting connections:

 - name: ensure healthy service

 wait_for:

 port: 80

Finally, we can re-enable the member within haproxy. Once again, we'll
delegate the task to foo-lb:

 - name: enable member in balancer

 haproxy:

 backend: foo-app

 host: "{{ inventory_hostname }}"

 state: enabled

 delegate_to: foo-lb

Of course, we still need to define our reload nginx handler:

 handlers:

 - name: reload nginx

 service:

 name: nginx

 state: restarted

This playbook, when run, will now perform a rolling in-place upgrade of our
application.

Expanding and contracting
An alternative to the in-place upgrade strategy is the expand and contract
strategy. This strategy has become popular of late, thanks to the self-service
nature of on-demand infrastructures, such as cloud computing or
virtualization pools. The ability to create new servers on demand from a large
pool of available resources means that every deployment of an application
can happen on brand new systems. This strategy avoids a host of issues, such
as a build up of cruft on long-running systems, like the following:

Configuration files that are no longer managed by Ansible being left
behind
Runaway processes consuming resources in the background
Changes being made to the server manually by human beings without
updating the Ansible playbooks

Starting fresh each time also removes the differences between an initial
deployment and an upgrade. The same code path can be used, reducing the
risk of surprises when upgrading an application. This type of installation can
also make it extremely easy to roll back if the new version does not perform
as expected. In addition to this, as new systems are created to replace old
systems, the application does not need to go into a degraded state during the
upgrade.

Let's re-approach our previous upgraded playbook with the expand and
contract strategy. Our pattern will be to create new servers, deploy our
application, verify our application, add new servers to the load balancer, and
remove old servers from the load balancer. Let's start by creating new
servers. For this example, we'll make use of an OpenStack compute cloud to
launch new instances:

- name: Create new foo servers

 hosts: localhost

 tasks:

 - name: launch instances

 os_server:

 name: foo-appv{{ version }}-{{ item }}

 image: foo-appv{{ version }}

 flavor: 4

 key_name: ansible-prod

 security_groups: foo-app

 auto_floating_ip: false

 state: present

 auth:

 auth_url: https://me.openstack.blueboxgrid.com:5001/v2.0

 username: jlk

 password: FAKEPASSW0RD

 project_name: mastery

 register: launch

 loop: "{{ range(1, 8 + 1, 1)|list }}"

In this task, we're looping over a count of 8, using the new loop with range
syntax that was introduced in Ansible 2.5. Each loop in the item variable will
be replaced by a number. This allows us to create eight new server instances
with names based on the version of our application and the number of the
loop. We're also assuming a prebuilt image to use, so that we do not need to
do any further configuration on the instance. In order to use the servers in
future plays, we need to add their details to the inventory. To accomplish this,
we register the results of the run in the launch variable, which we'll use to
create runtime inventory entries:

 - name: add hosts

 add_host:

 name: "{{ item.openstack.name }}"

 ansible_ssh_host: "{{ item.openstack.private_v4 }}"

 groups: new-foo-app

 with_items: launch.results

This task will create new inventory items with the same names as those of
our server instance. To help Ansible know how to connect, we'll set
ansible_ssh_host to the IP address that our cloud provider assigned to the
instance (this is assuming that the address is reachable by the host running
Ansible). Finally, we'll add the hosts to the new-foo-app group. As our launch
variable comes from a task with a loop, we need to iterate over the results of
that loop by accessing the results key. This allows us to loop over each launch
action to access the data specific to that task.

Next, we'll operate on the servers to ensure that the new service is ready for
use. We'll use wait_for again, just like we did earlier, as a part of a new play
on our new-foo-app group:

- name: Ensure new app

 hosts: new-foo-app

 tasks:

 - name: ensure healthy service

 wait_for:

 port: 80

Once they're all ready to go, we can reconfigure the load balancer to make
use of our new servers. For the sake of simplicity, we will assume a template
for the haproxy configuration that expects hosts in a new-foo-app group, and the
end result will be a configuration that knows all about our new hosts and
forgets about our old hosts. This means that we can simply call a template
task on the load balancer system itself, rather than attempting to manipulate
the running state of the balancer:

- name: Configure load balancer

 hosts: foo-lb

 tasks:

 - name: haproxy config

 template:

 dest: /etc/haproxy/haproxy.cfg

 src: templates/etc/haproxy/haproxy.cfg

 - name: reload haproxy

 service:

 name: haproxy

 state: reloaded

Once the new configuration file is in place, we can issue a reload of the
haproxy service. This will parse the new configuration file and start a new
listening process for new incoming connections. The existing connections
will eventually close, and the old processes will terminate. All new
connections will be routed to the new servers running our new application
version.

This playbook can be extended to decommission the old version of the
servers, or that action may happen at a different times when it has been
decided that a rollback to the old version capability is no longer necessary.

The expand and contract strategy can involve more tasks, and even separate
playbooks for creating a golden image set, but the benefits of a fresh
infrastructure for every release far outweigh the extra tasks or added
complexity of creation followed by deletion.

Failing fast
When performing an upgrade of an application, it may be desirable to fully
stop the deployment at any sign of an error. A partially upgraded system with
mixed versions may not work at all, so continuing with part of the
infrastructure while leaving the failed systems behind can lead to big
problems. Fortunately, Ansible provides a mechanism to decide when to
reach a fatal error scenario.

By default, when Ansible is running through a playbook and encounters an
error, it will remove the failed host from the list of play hosts and continue
with the tasks or plays. Ansible will stop executing either when all the
requested hosts for a play have failed, or when all the plays have been
completed. To change this behavior, there are a couple of play controls that
can be employed. Those controls are any_errors_fatal and max_fail_percentage.

The any_errors_fatal option
This setting instructs Ansible to consider the entire operation fatal, and to
stop executing immediately if any host encounters an error. To demonstrate
this, we'll add a new group to our mastery-hosts inventory, using a pattern that
will expand up to 10 new hosts:

[failtest]

failer[01:10]

Then, we'll create a play on this group with any_errors_fatal set to true. We'll
also turn off fact gathering, since these hosts do not exist:

- name: any errors fatal

 hosts: failtest

 gather_facts: false

 any_errors_fatal: true

We want a task that will fail for one of the hosts, but not the others. Then,
we'll want a second task as well, just to demonstrate how it will not run:

 tasks:

 - name: fail last host

 fail:

 msg: "I am last"

 when: inventory_hostname == play_hosts[-1]

 - name: never run

 debug:

 msg: "I should never be run"

 when: inventory_hostname == play_hosts[-1]

Now, when we execute, we'll see one host fail, but the entire play will stop
after the first task:

We can see that just one host failed; however, Ansible reported NO MORE HOSTS
LEFT (implying that all hosts failed) and aborted the playbook before getting to
the next play.

The max_fail_percentage option
This setting allows play developers to define a percentage of hosts that can
fail before the whole operation is aborted. At the end of each task, Ansible
will perform a calculation to determine the number of hosts targeted by the
play that have reached a failure state, and if that number is greater than the
number allowed, Ansible will abort the playbook. This is similar to
any_errors_fatal; in fact, any_errors_fatal just internally expresses a
max_fail_percentage parameter of 0, where any failure is considered fatal. Let's
edit our play from the preceding and remove any_errors_fatal, replacing it with
the max_fail_percentage parameter set to 20:

- name: any errors fatal

 hosts: failtest

 gather_facts: false

 max_fail_percentage: 20

By making that change, our play should complete both tasks without
aborting:

Now, if we change the condition on our first task so that we fail on over 20
percent of the hosts, we'll see the playbook abort early:

 - name: fail last host

 fail:

 msg: "I am last"

 when: inventory_hostname in play_hosts[0:3]

We're setting up three hosts to fail, which will give us a failure rate of greater
than 20 percent. The max_fail_percentage setting is the maximum allowed, so our
setting of 20 would allow 2 out of the 10 hosts to fail. With three hosts failing,
we will see a fatal error before the second task:

With this combination of parameters, we can easily set up and control fail
fast conditions on a group of hosts, which is incredibly valuable if our goal is
to maintain the integrity of an environment during an Ansible deployment.

Forcing handlers
Normally, when Ansible fails a host, it stops executing anything on that host.
This means that any pending handlers will not be run. This can be
undesirable, and there is a play control that will force Ansible to process
pending handlers for failed hosts. This play control is force_handlers, which
must be set to the Boolean true.

Let's modify our preceding example a little, in order to demonstrate this
functionality. We'll remove our max_fail_percentage parameter and add a new
first task. We need to create a task that will return successfully with a change.
This is possible with the debug module, using the changed_when task control, as
the debug module will never register a change otherwise. We'll revert our fail
task conditional to our original ones, as well:

- name: any errors fatal

 hosts: failtest

 gather_facts: false

 tasks:

 - name: run first

 debug:

 msg: "I am a change"

 changed_when: true

 when: inventory_hostname == play_hosts[-1]

 notify: critical handler

 - name: change a host

 fail:

 msg: "I am last"

 when: inventory_hostname == play_hosts[-1]

Our third task remains unchanged, but we will define our critical handler:

 - name: never run

 debug:

 msg: "I should never be run"

 when: inventory_hostname == play_hosts[-1]

 handlers:

 - name: critical handler

 debug:

 msg: "I really need to run"

Let's run this new play to show the default behavior of the handler not being

executed. In the interest of reduced output, we'll limit execution to just one of
the hosts. Note that, although the handler is referenced in the play output, it is
not actually run, as evidenced by the lack of any debug message:

Now, we add the force_handlers play control and set it to true:

- name: any errors fatal

 hosts: failtest

 gather_facts: false

 force_handlers: true

This time, when we run the playbook, we should see the handler run, even for
the failed hosts:

Forcing handlers can be a runtime decision, as well, using the --force-handlers command-
line argument on ansible-playbook. It can also be set globally, as a parameter in ansible.cfg.

Forcing handlers to run can be really useful for repeated playbook runs. The
first run may result in some changes, but if a fatal error is encountered before
the handlers are flushed, those handler calls will be lost. Repeated runs will
not result in the same changes, so the handler will never run without manual
interaction. Forcing handlers to execute attempts to ensure that those handler
calls are not lost.

Minimizing disruptions
During deployment, there are often tasks that can be considered disruptive or
destructive. These tasks may include restarting services, performing database
migrations, and so on. Disruptive tasks should be clustered together to
minimize the overall impact on an application, while destructive tasks should
only be performed once.

Delaying a disruption
Restarting services for a new code version is a very common requirement.
When viewed in isolation, a single service can be restarted whenever the code
and configuration for the application has changed, without concern for the
overall distributed system health. Typically, a distributed system will have
roles for each part of the system, and each role will essentially operate in
isolation on the hosts targeted to perform those roles. When deploying an
application for the first time, there is no existing uptime of the whole system
to worry about, so services can be restarted at will. However, during an
upgrade, it may be desirable to delay all service restarts until every service is
ready, to minimize interruptions.

The reuse of role code is strongly encouraged, as opposed to designing a
completely separate upgrade code path. To accommodate a coordinated
reboot, the role code for a particular service needs protection around the
service restart. A common pattern is to put a conditional statement on the
disruptive tasks that check a variable's value. When performing an upgrade,
the variable can be defined at runtime to trigger this alternative behavior.
This variable can also trigger a coordinated restart of services at the end of
the main playbook once all of the roles have completed, in order to cluster the
disruption and minimize the total outage.

Let's create a fictional application upgrade that involves two roles with
simulated service restarts. We'll call these roles microA and microB:

roles/microA

├── handlers

│ └── main.yaml

└── tasks

 └── main.yaml

roles/microB

├── handlers

│ └── main.yaml

└── tasks

 └── main.yaml

For both of these roles, we'll have a simple debug task that simulates the

installation of a package. We'll notify a handler to simulate the restart of a
service; and, to ensure that the handler will trigger, we'll force the task to
always register as changed. The following are the contents
of roles/microA/tasks/main.yaml:

- name: install microA package

 debug:

 msg: "This is installing A"

 changed_when: true

 notify: restart microA

The contents of roles/microB/tasks/main.yaml are as follows:

- name: install microB package

 debug:

 msg: "This is installing B"

 changed_when: true

 notify: restart microB

The handlers for these roles will be debug actions as well, and we'll attach a
conditional to the handler task to only restart if the upgrade variable evaluates
to the Boolean false. We'll also use the default filter to give this variable a
default value of false. The contents of roles/microA/handlers/main.yaml are as
follows:

- name: restart microA

 debug:

 msg: "microA is restarting"

 when: not upgrade | default(false) | bool

The contents of roles/microB/handlers/main.yaml are as follows:

- name: restart microB

 debug:

 msg: "microB is restarting"

 when: not upgrade | default(false) | bool

For our top-level playbook, we'll create four plays. The first two plays will
apply each of the micro roles, and the last two plays will do the restarts. The
last two plays will only be executed if performing an upgrade; so, they will
make use of the upgrade variable as a condition. Let's take a look at the
following code snippet (called micro.yaml):

- name: apply microA

 hosts: localhost

 gather_facts: false

 roles:

 - role: microA

- name: apply microB

 hosts: localhost

 gather_facts: false

 roles:

 - role: microB

- name: restart microA

 hosts: localhost

 gather_facts: false

 tasks:

 - name: restart microA for upgrade

 debug:

 msg: "microA is restarting"

 when: upgrade | default(false) | bool

- name: restart microB

 hosts: localhost

 gather_facts: false

 tasks:

 - name: restart microB for upgrade

 debug:

 msg: "microB is restarting"

 when: upgrade | default(false) | bool

If we execute this playbook without defining the upgrade variable, we will see
the execution of each role, and the handlers within. The final two plays will
have skipped tasks:

Now, let's execute the playbook again; this time, we'll define the upgrade as
true at runtime:

This time, we can see that our handlers are skipped, but the final two plays
have tasks that execute. In a real-world scenario, where many more things are
happening in the microA and microB roles (and, potentially, other micro-service
roles on other hosts), the difference could be of many minutes or more.
Clustering the restarts at the end can reduce the interruption period
significantly.

Running destructive tasks only once
Destructive tasks come in many flavors. They can be one-way tasks that are
extremely difficult to roll back, one-time tasks that cannot be rerun easily, or
race condition tasks that, if performed in parallel, would result in catastrophic
failure. For these reasons and more, it is essential that these tasks be
performed only once, from a single host. Ansible provides a mechanism to
accomplish this by way of the run_once task control.

The run_once task control will ensure that the task only executes a single time
from a single host, regardless of how many hosts happen to be in a play.
While there are other methods to accomplish this goal, such as using a
conditional to make the task execute only on the first host of a play, the
run_once control is the most simple and direct way to express this desire.
Additionally, any variable data registered from a task controlled by run_once
will be made available to all hosts of the play, not just the host that was
selected by Ansible to perform the action. This can simplify later retrieval of
the variable data.

Let's create an example playbook to demonstrate this functionality. We'll
reuse our failtest hosts that were created in an earlier example, in order to
have a pool of hosts, and we'll select two of them by using a host pattern.
We'll do a debug task set to run_once and register the results, then we'll access
the results in a different task with a different host:

- name: run once test

 hosts: failtest[0:1]

 gather_facts: false

 tasks:

 - name: do a thing

 debug:

 msg: "I am groot"

 register: groot

 run_once: true

 - name: what is groot

 debug:

 var: groot

 when: inventory_hostname == play_hosts[-1]

When we run this play, we'll pay special attention to the hostnames listed for
each task operation:

We can see that the do a thing task is executed on the failer01 host, while the
what is groot task, which examines the data from the do a thing task, operates
on the failer02 host .

Serializing single tasks
Certain applications that run multiple copies of a service may not react well
to all of those services being restarted at once. Typically, when upgrading
this type of application, a serial play is used. However, if the application is of
a large enough scale, serializing the entire play may be wildly inefficient. A
different approach can be used, which is to serialize only the sensitive tasks
(often the handlers to restart services).

To serialize a specific handler task, we can make use of a built-in variable,
play_hosts. This variable holds the list of hosts that should be used for a given
task as a part of the play. It is kept up to date with hosts that have failed or
are unreachable. Using this variable, we can construct a loop to iterate over
each host that could potentially run a handler task. Instead of using the item in
the module arguments, we'll use the item in a when conditional and a delegate_to
directive. In this manner, handler tasks that get notified within the playbook
can be delegated to a host in the aforementioned loop, rather than the original
host. However, if we just use this as the list for a loop directive, we'll end up
executing the task for every host, for each of the hosts that trigger a handler.
That's obviously unwanted, so we can use a task directive, run_once, to change
the behavior. The run_once directive instructs Ansible to only execute the task
for one host, instead of for every host that it would normally target.
Combining run_once and our loop of play_hosts creates a scenario where Ansible
will run through the loop only once. Finally, we want to wait a small amount
of time between each loop, so that the restarted service can become
functional before we restart the next one. We can make use of a loop_control of
pause (introduced in Ansible version 2.2) to insert a pause between each
iteration of the loop.

To demonstrate how this serialization will work, we'll write a play using a
few hosts from our failtest group, with a task that creates a change and
registers the output, so that we can check this output in the handler task we
notify, called restart groot. We then create the serialized handler task itself at
the bottom of the playbook:

- name: parallel and serial

 hosts: failtest[0:3]

 gather_facts: false

 tasks:

 - name: do a thing

 debug:

 msg: "I am groot"

 changed_when: inventory_hostname in play_hosts[0:2]

 register: groot

 notify: restart groot

 handlers:

 - name: restart groot

 debug:

 msg: "I am groot?"

 loop: "{{ play_hosts }}"

 delegate_to: "{{ item }}"

 run_once: true

 when: hostvars[item]['groot']['changed'] | bool

 loop_control:

 pause: 2

Upon execution of this playbook, we can see the handler notification (thanks
to double verbosity, -vv), and in the handler task, we can see the loop,
conditional, and delegation:

If you have tried this code out for yourself, you will notice the delay between
each handler run, just as we specified in the loop_control part of the task.

Summary
Deployment and upgrade strategies are a matter of taste. Each strategy comes
with distinct advantages and disadvantages. Ansible does not declare an
opinion about which is better, and therefore, it is well-suited to perform
deployments and upgrades regardless of the strategy. Ansible provides
features and design patterns that facilitate a variety of styles with ease.
Understanding the nature of each strategy and how Ansible can be tuned for
that strategy will empower you to decide on and design deployments for each
of your applications. Task controls and built-in variables provide methods to
efficiently upgrade large-scale applications, while treating specific tasks
carefully.

In this chapter, you learned how to use Ansible to perform in-place upgrades,
and some different methodologies for these, including techniques such as
expanding and contracting an environment. You learned about failing fast to
ensure that playbooks don't cause extensive damage if an early part of a play
goes wrong, and how to minimize both disruptive and destructive actions.
Finally, you learned about serializing single tasks for the purpose of
minimizing disruption to running services, by taking nodes out of service in a
minimal controlled manner. This ensures that the service remains operational
while maintenance work (such as an upgrade) occurs behind the scenes.

In the next chapter, we'll go into detail about using Ansible to work with
cloud infrastructure providers and container systems, in order to create an
infrastructure to manage.

Infrastructure Provisioning
Almost everything in data centers is becoming software defined, from
networks to the server infrastructure on which our software runs.
Infrastructure as a Service (IaaS) providers offer APIs for
programmatically managing images, servers, networks, and storage
components. These resources are often expected to be created just-in-time, in
order to reduce costs and increase efficiency.

As a result, a great deal of effort has gone into the cloud provisioning aspect
of Ansible since the last edition of this book, with more than 30 infrastructure
providers catered for in the official Ansible release. These range from open
source solutions such as OpenStack and oVirt to proprietary providers such
as VMware and cloud providers such as AWS, GCP, and Azure.

There are more use cases than we can cover in this chapter, but nonetheless,
we will explore the following ways in which Ansible can interact with a
variety of these services:

Managing an on-premise cloud infrastructure
Managing a public cloud infrastructure
Interacting with Docker containers
Making use of Ansible containers

Technical requirements
Check out the following video to see the Code in Action:

http://bit.ly/2Ft2Qty

http://bit.ly/2Ft2Qty

Managing cloud infrastructures
The cloud is a popular but vague term, used to describe IaaS. There are many
types of resources that can be provided by a cloud, although the most
commonly discussed are compute and storage. Ansible is capable of
interacting with numerous cloud providers, in order to discover, create, or
otherwise manage resources within them. Note that although we will focus on
the compute and storage resources in this chapter, Ansible has a modules for
interacting with many more cloud resource types, such as load balancers, and
even cloud role-based access controls.

One such cloud provider that Ansible can interact with is OpenStack (an open
source cloud operating system), and this is a likely solution for those with a
need for on-premise IaaS functionality. A suite of services provides interfaces
to manage compute, storage, and networking services, plus many other
supportive services. There is not a single provider of OpenStack; instead,
many public and private cloud providers build their products with OpenStack,
and thus although the providers may themselves be disparate, they provide
the same APIs and software interfaces so that Ansible can automate tasks
with ease in these environments.

Ansible has supported OpenStack services since very early in the project.
That initial support has grown to include over forty modules, with support for
managing the following:

Compute
Bare-metal compute
Compute images
Authentication accounts
Networks
Object storage
Block storage

In addition to performing create, read, update, and delete (CRUD) actions

on the preceding types of resources, Ansible also includes the ability to use
OpenStack (and other clouds) as an inventory source, and we touched on this
earlier, in Chapter 1, The System Architecture and Design of Ansible. Each
execution of ansible or ansible-playbook that utilizes an OpenStack cloud as an
inventory source will get on-demand information about what compute
resources exist, and various facts about those compute resources. Since the
cloud service is already tracking these details, this can reduce overheads by
eliminating the manual tracking of resources.

To demonstrate Ansible's ability to manage and interact with cloud resources,
we'll walk through two scenarios: a scenario to create and then interact with
new compute resources, and a scenario that will demonstrate using
OpenStack as an inventory source.

Creating servers
The OpenStack compute service provides an API for creating, reading,
updating, and deleting of virtual machine servers. Through this API, we'll be
able to create the server for our demonstration. After accessing and
modifying the server through SSH, we'll also use the API to delete the server.
This self-service ability is a key feature of cloud computing.

Ansible can be used to manage these servers by using the various os_server
modules:

os_server: This module is used to create and delete virtual servers.
os_server_facts: This module is used to gather facts about a server.
os_server_actions: This module is used to perform various actions on a
server.
os_server_group: This module is used to create and delete server groups.
os_server_volume: This module is used to attach or detach block storage
volumes from a server.
os_server_metadata: This module is used to create, update, and delete
metadata for virtual servers.

Booting virtual servers
For our demonstration, we will use os_server. We'll need to provide
authentication details about our cloud, such as the auth URL and our login
credentials. In addition to this, we will need to set up our Ansible host with
the correct prerequisite software for this module to function. As we discussed
earlier in the book when addressing dynamic inventories, Ansible sometimes
requires additional software or libraries on the host in order to function. In
fact, it is a policy of the Ansible developers to not ship cloud libraries with
Ansible itself, as they would rapidly become out of date, and different
operating systems would require different versions.

You can always find the software dependencies in the Ansible documentation
for each module, so it is worth checking this when using a module for the
first time (especially a cloud provider module). The Ansible host used for the
demos throughout this book is based on CentOS 7, and in order for the
os_server module to function, I had to run the following command first:

sudo pip install openstacksdk decorator==4.0

The exact software and version will depend on our host operating system, and
may change with newer Ansible releases. There may be native packages
available for your operating system, too—it is worth spending a few minutes
checking this before proceeding.

Once the prerequisite modules are in place, we can proceed with the server
creation. For this, we'll need a flavor, an image, a network, and a name. You
will also need a key, and this will need to be defined in the OpenStack GUI
(or CLI) before proceeding. Naturally, these details may be different for each
OpenStack cloud. For this demo, I am using a single, all-in-one VM based on
devstack, and I am using defaults as much as possible, to make it easy to
follow.

I'll name our playbook boot-server.yaml. Our play starts with a name and uses
localhost as the host pattern. As we do not rely on any local facts, I'll turn fact

gathering off, as well:

- name: boot server

 hosts: localhost

 gather_facts: false

To create the server, I'll use the os_server module and provide the auth details
relevant to an OpenStack cloud that I have access to, as well as a flavor,
image, network, and name. Note the key_name, which indicates the SSH public
key from the keypair you would have created for yourself in OpenStack prior
to writing this playbook (as discussed previously in this chapter). This SSH
public key is integrated into the Fedora 29 image we are using when it is first
booted on OpenStack so that we can subsequently gain access to it over
SSH. I also uploaded a Fedora 29 image for demonstration purposes in this
chapter, as it allows for greater manipulation than the default Cirros image
that is included with OpenStack distributions. These images can be freely
downloaded, ready-made, from https://alt.fedoraproject.org/cloud/. Finally, as
you'd expect, I've obfuscated my password:

 tasks:

 - name: boot the server

 os_server:

 auth:

 auth_url: "http://devstack.example.com/identity/v3"

 username: "admin"

 password: "password"

 project_name: "demo"

 project_domain_name: "default"

 user_domain_name: "default"

 flavor: "ds1G"

 image: "Fedora 29"

 key_name: "mastery-key"

 network: "private"

 name: "mastery1"

Authentication details can be written to an external file, which will be read by the
underlying module code. This module code uses os-client-config, a standard library for
managing OpenStack credentials. Alternatively, they can be stored in an Ansible Vault, as
we described in Chapter 2, Protecting Your Secrets with Ansible, and then passed to the
module as variables.

Running this play as-is will simply create the server, and nothing more. I can
use the previously created mastery-hosts as an inventory source, as I'm only
using localhost from it:

https://alt.fedoraproject.org/cloud/

I've truncated the output, as there is a lot of data returned from the module.
Most importantly, we get data regarding the IP addresses of the host. This
particular cloud uses a floating IP to provide public access to the server
instance, which we can see the value for by registering the output and then
debug printing the value of openstack.accessIPv4:

 tasks:

 - name: boot the server

 os_server:

 auth:

 auth_url: "http://devstack.example.com/identity/v3"

 username: "admin"

 password: "password"

 project_name: "demo"

 project_domain_name: "default"

 user_domain_name: "default"

 flavor: "ds1G"

 image: "Fedora 29"

 key_name: "mastery-key"

 network: "private"

 name: "mastery1"

 register: newserver

 - name: show floating ip

 debug:

 var: newserver.openstack.accessIPv4

This time, when executing, the first task does not result in a change, as the
server that we want already exists:

The output shows an IP address of 172.24.4.46. I can use that information to
connect to my newly created cloud server.

Adding to runtime inventory
Booting a server isn't all that useful by itself. The server exists to be used, and
will likely need some configuration to become useful. While it's possible to
have one playbook to create resources and a completely different playbook to
manage configuration, we can also do it all from the same playbook. Ansible
provides a facility to add hosts to the inventory as a part of a play, which will
allow for the use of those hosts in subsequent plays.

Working from the previous example, we have enough information to add the
new host to the runtime inventory, by way of the add_host module:

 - name: add new server

 add_host:

 name: "mastery1"

 ansible_ssh_host: "{{ newserver.openstack.accessIPv4 }}"

 ansible_ssh_user: "fedora"

I know that this image has a default user of fedora, so I set a host variable
accordingly, along with setting the IP address as the connection address.

This example is also glossing over any required security group configuration in
OpenStack, and any accepting of the SSH host key. Additional tasks can be added to
manage these things.

With the server added to our inventory, we can do something with it. Let's
imagine a scenario in which we want to use this cloud resource to convert an
image file, using ImageMagick software. To accomplish this, we'll need a new
play to make use of the new host. I know that this particular fedora image does
not contain Python, so we need to add Python and the Python bindings for dnf
(so we can use the dnf module) as our first task, using the raw module:

- name: configure server

 hosts: mastery1

 gather_facts: false

 tasks:

 - name: install python

 raw: "sudo dnf install -y python python2-dnf"

Next, we'll need the ImageMagick software, which we can install by using the dnf
module:

 - name: install imagemagick

 dnf:

 name: "ImageMagick"

 become: "yes"

Running the playbook at this point will show the changed tasks for our new
host; note that this time, we must give ansible-playbook the location of our
private key file from OpenStack, so that it can authenticate to the fedora
image:

We can see Ansible reporting two changed tasks on the host mastery1, which
we just created in the first play. This host does not exist in the mastery-hosts

inventory file.

We have turned off verbose reporting here, too, as the output would
otherwise be very cumbersome to wade through; however, given that we
have the private key file for our OpenStack instance, we can manually log in
and check the results of our playbook:

From here, we could extend our second play to upload a source image file by
using copy, then perform a command by using ImageMagick on the host to
convert the image. Another task can be added to fetch the converted file back
down by using the slurp module, or the modified file can be uploaded to a
cloud-based object store. Finally, a last play can be added to delete the server
itself.

The entire lifespan of the server, from creation to configuration to use, and
finally, to removal, can all be managed with a single playbook. The playbook
can be made dynamic by reading runtime variable data, in order to define
what file should be uploaded/modified and where it should be stored,
essentially turning the playbook into a reusable program. Although somewhat
simplistic, hopefully this gives you a clear idea of how powerful Ansible is
for working with infrastructure service providers.

Using OpenStack inventory sources
Our previous example imagined a single-use, short-lived cloud server. What
if we want to create and use long-lived cloud servers, instead? Walking
through the tasks of creating them and adding them to the temporary
inventory each time we want to touch them seems inefficient. Manually
recording the server details into a static inventory also seems inefficient, and
also error-prone. Thankfully, there is a better way: using the cloud itself as a
dynamic inventory source.

Ansible ships with a number of dynamic inventory scripts for cloud
providers, as we discussed in Chapter 1, The System Architecture and Design
of Ansible. We'll continue our examples here with OpenStack. To recap, the
Ansible source repository holds these contributed scripts in contrib/inventory/,
and the OpenStack script is contrib/inventory/openstack_inventory.py, with an
associated configuration file at contrib/inventory/openstack.yml. To make use of
this script, simply copy the .py file to the playbook directory that expects to
use it, or to a path accessible to all users/playbooks on the system that will be
executing Ansible. For our example, I'll copy it to the playbook directory.

The configuration file needs a bit more consideration. This file holds
authentication details for the OpenStack cloud(s) to connect to. That makes
this file sensitive, and it should only be made visible to the users that require
access to this information. In addition, the inventory script will attempt to
load the configuration from the standard paths used by os-client-config (https:/
/docs.openstack.org/developer/os-client-config/), the underlying authentication
code. This means that the configuration for this inventory source can live in
the following:

clouds.yaml, in the current working directory when executing the
inventory script
~/.config/openstack/clouds.yaml

/etc/openstack/clouds.yaml

/etc/openstack/openstack.yaml

https://docs.openstack.org/developer/os-client-config/

/etc/openstack/openstack.yml

The first file that's found will be used. For our example, I'll use a clouds.yaml
file in the playbook directory alongside the script itself, in order to isolate
configuration from any other paths.

The help output for the script shows a few possible arguments; however, the
ones that Ansible will use are --list and --host:

The first is used to get a list of all of the servers visible to the account used,
and the second would be used to get host variable data from each, except that
this inventory script returns all of the host variables with the --list call.
Returning the data with the host list is a performance enhancement, as we
discussed earlier in the book, eliminating the need to call the OpenStack APIs
for each and every host returned.

The output from --list is quite long; here are the first few lines:

The configured account only has one visible server, which has a UUID of
63338332-de64-4200-bb60-c74a92fcba82, the instance that we booted in a previous
example. We see this instance listed in the ds1G and Fedora 29 groups , for
example. The first group is for all of the servers running with the ds1G flavor,
and the second is for all servers running from our Fedora 29 image. These
groupings happen automatically within the inventory plugin, and may vary
according to the OpenStack setup that you use. The tail end of the output will
show the other groups provided by the plugin:

Note that for the preceding groupings to appear, expand_hostvars: True must be set in the
clouds.yml file.

Some of the additional groups are as follows:

devstack: All servers running on our devstack instance
flavor-ds1G: All servers that use the ds1G flavor
image-Fedora 29: All servers that use the Fedora 29 image
instance-63338332-de64-4200-bb60-c74a92fcba82: A group named after the
instance itself
nova: All servers running under the nova service

There are many groups provided, each with a potentially different slice of the
servers found by the inventory script. These groups make it easy to target just
the right instances with plays. The hosts are defined as the UUIDs of the
servers. As these are unique by nature, and also quite long, they are unwieldy
as a target within a play. This makes groups all the more important.

To demonstrate using this script as an inventory source, we'll recreate the
previous example, skipping over the creation of the server and just writing
the second play by using an appropriate group target. We'll name this
playbook configure-server.yaml:

- name: configure server

 hosts: all

 gather_facts: false

 remote_user: fedora

 tasks:

 - name: install python

 raw: "sudo dnf install -y python python2-dnf"

 - name: install imagemagick

 dnf:

 name: "ImageMagick"

 become: "yes"

The default user of this image is fedora; however, that information isn't readily
available via the OpenStack APIs, and thus, it is not reflected in the data that
our inventory script provides. We can simply define the user to use at the
play level.

This time, the host pattern is set to all, as we only have one host on our demo
OpenStack server at this time; however, in real life it's unlikely that you
would be so open in your host targeting in Ansible.

The rest of the play is unchanged, and the output should look similar to
previous executions:

This output differs from the last time that the boot-server.yaml playbook was
executed in only a few ways. First, the mastery1 instance is not created or
booted. We're assuming that the servers we want to interact with have already
been created and are running. Secondly, we have pulled the inventory for this
playbook run directly from the OpenStack server itself, using a dynamic
inventory script, rather than creating one in the playbook using add_host.
Otherwise, the output is the same.

As servers get added or removed over time, each execution of the inventory
plugin will discover what servers are there at the moment of playbook
execution. This can save a significant amount of time over attempting to
maintain an accurate list of servers in static inventory files.

Managing a public cloud
infrastructure
The management of public cloud infrastructures with Ansible is no more
difficult than the management of OpenStack with it, as we covered earlier. In
general, for any IaaService provider supported by Ansible, there is a three-
step process to getting it working:

1. Establish the Ansible modules available to support the cloud provider.
2. Install any prerequisite software or libraries on the Ansible host.
3. Define the playbook and run it against the infrastructure provider.

There are dynamic inventory scripts readily available for most providers, too,
and we have already demonstrated two in this book:

ec2.py was discussed in Chapter 1, The System Architecture and Design of
Ansible.
openstack_inventory.py was demonstrated earlier in this chapter.

Let's take a look at Amazon Web Services (AWS), and specifically, their
EC2 offering. We can boot up a new server from an image of our choosing,
using exactly the same high-level process that we did with OpenStack earlier.
However, as I'm sure you will have guessed by now, we have to use an
Ansible module that offers specific EC2 support. Let's build up the playbook.
First of all, our initial play will once again run from the local host, as this will
be making the calls to EC2 to boot up our new server:

- name: boot server

 hosts: localhost

 gather_facts: false

Next, we will use the ec2 module in place of the os_server module to boot up
our desired server. This code is really just an example; normally, just like
with our os_server example, you would not include the secret keys in the

playbook, but would store them in a vault somewhere:

 - name: boot the server

 ec2:

 access_key: XXXXXXXXXXXXXXXXX

 secret_key: xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

 keypair: mastery-key

 group: default

 type: t2.medium

 image: "ami-000848c4d7224c557"

 region: eu-west-2

 instance_tags: "{'ansible_group':'mastery_server', 'Name':'mastery1'}"

 exact_count: 1

 count_tag:

 ansible_group: "mastery_server"

 wait: true

 user_data: |

 #!/bin/bash

 sudo dnf install -y python python2-dnf

 register: newserver

The ec2 module requires the Python boto library to be installed on the Ansible host; the
method for this will vary between operating systems, but on our CentOS 7 demo host, it
was installed using the sudo yum install python-boto command .

The preceding code is intended to perform the same job as our os_server
example, and while it looks similar at a high level, there are many
differences. Hence, it is essential to read the module documentation whenever
working with a new module, in order to understand precisely how to use it.
Of specific interest, do note the following:

The ec2 module creates a new virtual machine every time it is run, unless
you set the exact_count parameter in conjunction with the count_tags
parameter (mentioning a tag set in the instance_tags line).
The user_data field can be used to send post-creation scripts to the new
VM; this is incredibly useful when initial configuration is needed
immediately, lending itself to raw commands. In this case, we use it to
install the Python prerequisites required to install ImageMagick later on.

Next, we can obtain the public IP address of our newly created server by
using the newserver variable that we registered in the last task. However, note
the different variable structure, as compared to the way that we accessed this
information when using the os_server module (again, always refer to the
documentation):

 - name: show floating ip

 debug:

 var: newserver.tagged_instances[0].public_ip

Another key difference between the ec2 module and the os_server one is that
ec2 does not wait for SSH connectivity to become available before
completing; thus, we must define a task specifically for this purpose to ensure
that our playbook doesn't fail later on due to a lack of connectivity:

 - name: Wait for SSH to come up

 wait_for_connection:

 timeout: 320

Once this task has completed, we will know that our host is alive and
responding to SSH, so we can proceed to using add_host to add this new host
to the inventory, and then install ImageMagick just like we did before (the image
used here is the same Fedora 29 cloud-based image used in the OpenStack
example):

 - name: add new server

 add_host:

 name: "mastery1"

 ansible_ssh_host: "{{ newserver.tagged_instances[0].public_ip }}"

 ansible_ssh_user: "fedora"

- name: configure server

 hosts: mastery1

 gather_facts: false

 tasks:

 - name: install imagemagick

 dnf:

 name: "ImageMagick"

 become: "yes"

Putting all of this together and running the playbook should result in
something like the following screenshot. Note that I have turned SSH host
key checking off, to prevent the SSH transport agent from asking about
adding the host key on the first run, which would cause the playbook to hang
and wait for user intervention, something that we don't want here:

As we have seen here, we can achieve the same result on a different cloud
provider, using only a subtly different playbook. The key here is to read the
documentation that comes with each module and ensure that both the
parameters and return values are correctly referenced.

We could apply this methodology to Azure, Google Cloud, or any of the
other cloud providers that Ansible ships with support for. If we wanted to
repeat this example on Azure, then we would need to use
the azure_rm_virtualmachine module. The documentation for this module states
that we need Python 2.7 or newer (this is already a part of our CentOS 7
demo machine), and the azure Python module, version 2.0.0 or higher. On
CentOS 7, there was no RPM for the latter dependency, so it was installed
using the commands (the first installs the azure Python module, and the
second installs the Ansible support for Azure):

sudo pip install azure

sudo pip install ansible[azure]

With these prerequisites satisfied, we can build up our playbook again. Note
that with Azure, multiple authentication methods are possible. For the sake of
simplicity, I am using the Azure Active Directory credentials that I created
for this demo; however, to enable this, I had to also install the official Azure
CLI utility, and log in using the following:

az login

This ensures that your Ansible host is trusted by Azure. In practice, you
would set up a service principal that removes the need for this; however,
doing so is beyond the scope of this book. To continue with this example, we
set up the header of our playbook like before:

- name: boot server

 hosts: localhost

 gather_facts: false

 vars:

 vm_password: Password123!

Note that this time, we will store a password for our new VM in a variable;
normally, we would do this in a vault, but that is left as an exercise for the

reader. From here, we use the azure_rm_virtualmachine module to boot up our
new VM. To make use of a Fedora 29 image for continuity with the previous
examples, I've had to go to the image marketplace on Azure, which requires
some additional parameters, such as plan, to be defined. To enable the use of
this image with Ansible, I first had to find it, then accept the terms of the
author to enable its use, using the az command-line utility with these
commands:

az vm image list --offer fedora --all --output table

az vm image show --urn tunnelbiz:fedora:fedora29:1.0.0

az vm image accept-terms --urn tunnelbiz:fedora:fedora29:1.0.0

I also had to create the resource group and network that the VM would use;
these are very much Azure-specific steps, and are beyond the scope of this
book. However, once all of that was created, I was then able to write the
following playbook code to boot up our Azure-based Fedora 29 image:

 tasks:

 - name: boot the server

 azure_rm_virtualmachine:

 ad_user: masteryadmin@example.com

 password: xxxxxxx

 resource_group: mastery

 name: mastery1

 admin_username: fedora

 admin_password: "{{ vm_password }}"

 vm_size: Standard_B1s

 image:

 offer: fedora

 publisher: tunnelbiz

 sku: fedora29

 version: latest

 plan:

 name: fedora29

 product: fedora

 publisher : tunnelbiz

 register: newserver

Like before, we obtain the public IP address of our image (note the complex
variable required to access this), ensure that SSH access is working, and then
use add_host to add the new VM to our runtime inventory:

 - name: show floating ip

 debug:

 var: newserver.ansible_facts.azure_vm.properties.networkProfile.networkInterfaces[0].properties.ipConfigurations[0].properties.publicIPAddress.properties.ipAddress

 - name: Wait for SSH to come up

 wait_for_connection:

 delay: 1

 timeout: 320

 - name: add new server

 add_host:

 name: "mastery1"

 ansible_ssh_host: "{{ newserver.ansible_facts.azure_vm.properties.networkProfile.networkInterfaces[0].properties.ipConfigurations[0].properties.publicIPAddress.properties.ipAddress }}"

 ansible_ssh_user: "fedora"

 ansible_ssh_pass: "{{ vm_password }}"

 ansible_become_pass: "{{ vm_password }}"

Azure allows for either password- or key-based authentication for SSH on
Linux VMs; we're using password-based here for simplicity. Also, note the
newly utilized ansible_become_pass connection variable, as the Fedora 29 image
that we are using will prompt for a password when sudo is used, potentially
blocking execution. Finally, with this work complete, we install ImageMagick,
like before:

- name: configure server

 hosts: mastery1

 gather_facts: false

 tasks:

 - name: install python

 raw: "dnf install -y python python2-dnf"

 become: "yes"

 - name: install imagemagick

 dnf:

 name: "ImageMagick"

 become: "yes"

Let's take a look at this in action:

The output is very similar to before, demonstrating that we can very easily
perform the same actions across different cloud platforms with just a little
effort in terms of learning how the various modules that we might need work.
This section of the chapter is by no means definitive, given the number of
platforms and operations supported by Ansible, but we hope that the
information provided gives an idea of the process and steps required for
getting Ansible to integrate with a new cloud platform. Next, we will look at
using Ansible to interact with Docker containers.

Interacting with Docker containers
Linux container technologies, especially Docker, have grown in popularity in
recent years, and this has continued since the last edition of this book was
published. Containers provide a fast path to resource isolation, while
maintaining consistency of the runtime environment. They can be launched
quickly and are efficient to run, as there is very little overhead involved.
Utilities such as Docker provide a lot of useful tooling for container
management, such as a registry of images to use as the filesystem, tooling to
build the images themselves, clustering orchestration, and so on. Through its
ease of use, Docker has become one of the most popular ways to manage
containers.

Ansible can interact with Docker in numerous ways as well. Notably, Ansible
can be used to build images, to start or stop containers, to compose multiple
container services, to connect to and interact with active containers, or even
to discover inventory from containers. Ansible provides a full suite of tools
for working with Docker, including relevant modules, a connection plugin,
and an inventory script.

To demonstrate working with Docker, we'll explore a few use cases. The first
use case is building a new image to use with Docker. The second use case is
launching a container from the new image and interacting with it. The last use
case is using the inventory plugin to interact with an active container.

Creating a functional Docker installation is beyond the scope of this book. The Docker
website provides detailed installation and use instructions, at https://docs.docker.com. Ansible
works best with Docker on a Linux host, so we will continue with the CentOS 7 demo
machine that we have used throughout this book.

https://docs.docker.com

Building images
Docker images are basically filesystems bundled with parameters to use at
runtime. The filesystem is usually a small part of a Linux Userland, with
enough files to start the desired process. Docker provides tooling to build
these images, generally based on very small, preexisting base images. The
tooling uses a Dockerfile as the input, which is a plain text file with directives.
This file is parsed by the docker build command, and we can parse it via the
docker_image module. The remaining examples will be from a CentOS 7 virtual
machine using Docker version 1.13.1, with the cowsay and nginx packages
added, so that running the container will provide a web server that will
display something from cowsay.

First, we'll need a Dockerfile. This file needs to live in a path that Ansible can
read, and we're going to put it in the same directory as my playbooks. The
Dockerfile content will be very simple. We'll need to define a base image, a
command to run to install the necessary software, some minimal
configuration of software, a port to expose, and a default action for running a
container with this image:

FROM docker.io/fedora:29

RUN dnf install -y cowsay nginx

RUN echo "daemon off;" >> /etc/nginx/nginx.conf

RUN cowsay boop > /usr/share/nginx/html/index.html

EXPOSE 80

CMD /usr/sbin/nginx

The build process performs the following steps:

We're using the Fedora 29 image from the fedora repository on the Docker
Hub image registry.
To install the necessary cowsay and nginx packages, we're using dnf.
To run nginx directly in the container, we need to turn daemon mode off in
nginx.conf.
We use cowsay to generate content for the default web page.

Then, we're instructing Docker to expose port 80 in the container, where
nginx will listen for connections.
Finally, the default action of this container will be to run nginx.

The playbook to build and use the image can live in the same directory. We'll
name it docker-interact.yaml. This playbook will operate on localhost, and will
have two tasks; one will be to build the image using docker_image, and the other
will be to launch the container using docker_container:

- name: build an image

 hosts: localhost

 gather_facts: false

 tasks:

 - name: build that image

 docker_image:

 path: .

 state: present

 name: fedora-moo

 - name: start the container

 docker_container:

 name: playbook-container

 image: fedora-moo

 ports: 8080:80

 state: started

Now, if you've been using AWX on the same host as this like I have, you will
already have a few Docker containers running. Luckily, none of these are
based on Fedora, so we can easily use the --filter parameters with Docker to
exclude anything that doesn't have the term fedora in the image name, making
the output easier to interpret, as shown in the following screenshots:

Now, let's run the playbook to build the image and start a container using that
image:

The verbosity of this playbook execution was reduced to save screen space.
Our output simply shows that the task to build the image resulted in a change,
as did the task to start the container. A quick check of running containers and
available images should reflect our work:

We can test the functionality of our container by using curl to access the web
server, which should show us a cow saying boop:

In this manner, we have already shown how easy it is to interact with Docker
using Ansible. However, this example is still based on using a native
Dockerfile, and, as we progress through this chapter, we'll see some more
advanced Ansible usage that removes the need for this.

Building containers without a
Dockerfile
Dockerfiles are useful, but many of the actions performed inside of
Dockerfiles could be completed with Ansible instead. Ansible can be used to
launch a container using a base image, then interact with that container using
the docker connection method to complete the configuration. Let's demonstrate
this by repeating the previous example, but without the need for a Dockerfile.
Instead, all of the work will be handled by an entirely new playbook named
docker-all.yaml. The first part of this playbook starts a container from a
preexisting image of Fedora 29 from Docker Hub, and adds the resulting
container details to Ansible's in-memory inventory by using add_host:

- name: build an image

 hosts: localhost

 gather_facts: false

 tasks:

 - name: start the container

 docker_container:

 name: playbook-container

 image: docker.io/fedora:29

 ports: 8080:80

 state: started

 command: sleep 500

 - name: make a host

 add_host:

 name: playbook-container

 ansible_connection: docker

 ansible_ssh_user: root

Then, using this newly added inventory host, we define a second play that
runs Ansible tasks within the container that was just launched, configuring
our cowsay service like before, but without the need for a Dockerfile:

- name: do things

 hosts: playbook-container

 gather_facts: false

 tasks:

 - name: install things

 raw: dnf install -y python-dnf

 - name: install things

 dnf:

 name: ['nginx', 'cowsay']

 - name: configure nginx

 lineinfile:

 line: "daemon off;"

 dest: /etc/nginx/nginx.conf

 - name: boop

 shell: cowsay boop > /usr/share/nginx/html/index.html

 - name: run nginx

 shell: nginx &

The playbook consists of two plays. The first play creates the container from
the base Fedora 29 image. The docker_container task is given a sleep command to
keep the container running for a period of time, as the docker connection
plugin only works with active containers (unconfigured operating system
images from Docker Hub generally exit immediately when they are run, as
they have no default actions to perform). The second task of the first play
creates a runtime inventory entry for the container. The inventory hostname
must match the container name. The connection method is set to docker as
well.

The second play targets the newly created host, and the first task uses the raw
module to get the python-dnf package in place (which will bring the rest of
python in), so that we can use the dnf module in the next task. The dnf module
is then used to install the desired packages, namely, nginx and cowsay. Then, the
lineinfile module is used to add a new line to the nginx configuration. A shell
task uses cowsay to create content for nginx to serve. Finally, nginx itself is
started as a background process.

Before running the playbook, let's remove any running containers from the
previous example:

With the running container removed, we can now run our new playbook to
recreate the container, bypassing the image build step:

We see tasks from the first play execute on the localhost, and then the second
play executes on the playbook-container. Once it's complete, we can test the web
service and list the running containers to verify our work. Note the different
filter this time; our container was build and run directly from the fedora image,
without the intermediate step of creating the fedora-moo image:

This method of using Ansible to configure the running container has some
advantages. First, you can reuse existing roles to set up an application, easily
switching from cloud virtual machine targets to containers, and even to bare
metal resources, if desired. Secondly, you can easily review all configuration
that goes into an application, simply by reviewing the playbook content.

Another use case for this method of interaction is to use Docker containers to
simulate multiple hosts, in order to verify playbook execution across multiple
hosts. A container can be started with an init system as the running process,
allowing for additional services to be started as if they were on a full
operating system. This use case is valuable within a continuous integration
environment, to validate changes to playbook content quickly and efficiently.

Docker inventory
Similar to the OpenStack and EC2 inventory plugins detailed earlier in this
book, a Docker inventory script is also available. The Docker script is located
at contrib/inventory/docker.py, within the Ansible source repository, with an
associated configuration file at contrib/inventory/docker.yml. To make use of this
script, simply copy the .py file to the playbook directory that expects to use it,
or to a path accessible to all users/playbooks on the system that will be
executing Ansible. For our example, I'll copy it to the playbook directory.
The configuration file, which can be used to define how to connect to one or
more Docker daemons, does not need to be used for this example, as we'll
simply be connecting to the local Docker daemon.

The help output for the script shows many possible arguments; however, the
ones that Ansible will use are --list and --host:

If the previously built container is still running when this script is executed to
list hosts, it should appear in the output (grep has been used to make this more
obvious in the screenshot):

Like earlier, a number of groups are presented, which have the running
container as a member. The two groups that were shown earlier are the short
container ID and the long container ID. Many variables are also defined as a
part of the output, which has been heavily truncated in the preceding
screenshot. The tail end of the output reveals a few more groups:

The additional groups are as follows:

docker_hosts: All of the hosts running the Docker daemon that the
dynamic inventory script has communicated with and queried for
containers
image_name: A group for each image used by discovered containers
container name: A group that matches the name of the container
running: A group of all the running containers
stopped: A group of all the stopped containers

This inventory plugin, and the groups and data provided by it, can be used by
playbooks to target various selections of containers available, in order to
interact without the need for manual inventory management or the use of
add_hosts.

Ansible Container
Ansible Container is a set of tools that builds upon concepts introduced
earlier in this chapter in order to provide a comprehensive workflow for
container development, testing, and deployment. Since the last release of this
book, a stable release has become available.

At the time of writing, Ansible Container does not get installed with Ansible,
and it must be installed separately. It can be installed from pypi as the package
name ansible-container, or it can be installed from the source repository (https:/
/github.com/ansible/ansible-container.git). At the time of writing this
book, ansible-container has some quite exacting requirements for the Python
environment; specifically, docker-py must be removed, and only version 2.7.0
of the docker Python module can be installed. Also note there is (at the time of
writing) a known issue in the interaction between the latest version of ansible-
container and the docker module, and the docker module must be patched
manually for this to work. Hopefully in future this will be fixed—however, at
the time of writing this is still required.

To successfully install it on our CentOS 7 demo machine, I had to issue the
following commands:

sudo pip uninstall docker-py

sudo pip uninstall docker

sudo pip install docker==2.7.0

sudo sed -i "s/return os.path.join(os.sep, 'run', 'secrets')/return os.path.join(os.sep, 'docker', 'secrets')/g" /usr/lib/python2.7/site-packages/container/docker/engine.py

sudo pip install -U setuptools

sudo pip install "ansible-container[docker,openshift]"

With Ansible Container, we can define one or more services to containerize.
These are defined in a YAML file that closely follows the Docker Compose
version 2 schema (support for the version 2 schema was added in the 0.3.0
release of ansible-container). Each service that's defined becomes a container
and is exposed as an Ansible host. These hosts are used by a playbook file to
perform all of the necessary configurations to prep the container to run the
service. Additional files can be used to define any Python library

https://github.com/ansible/ansible-container.git

requirements for modules used by the playbook, the Ansible Galaxy role
dependencies of the playbook, the Ansible Galaxy metadata for sharing the
project, and an Ansible configuration file used with the playbook.

The main executable of Ansible Container is ansible-container, which includes
a number of sub-commands:

init: The init sub-command will create the required directory structure
and template files for a new Ansible Container project within the current
directory. Optionally, it can connect to Ansible Galaxy and use a project
template to pre-populate some of the files; otherwise, they will mostly
be created blank.
build: The build sub-command is used to launch the containers for each
service defined, and one container with Ansible inside of it, which is
used to run the playbook against the service containers. Once the
playbook is finished, images are created from the configured containers.
run: The run sub-command will launch new containers for each service
using the images created during the build phase.
stop: The stop sub-command will stop containers launched by a run sub-
command.
push: The push sub-command will upload the built images to a target
Docker image registry.
shipit: The shipit sub-command will generate Ansible content to deploy
containers from built images into container orchestration platforms, such
as Kubernetes or Red Hat OpenShift:

To demonstrate Ansible Container, we'll reproduce our previous Docker
service container to display cowsay via a web server and run it locally.

Using ansible-container init
Ansible Container relies on a directory tree of content, which is created with
the init sub-command. This content is what will be made available inside of
the container used to run Ansible itself:

For this example, we'll create an ansible/ directory and run the init sub-
command in it:

First, to define our services, we'll need to edit the container.yml file within the
newly created ansible/ directory. Our example only has a single service,
which we'll name cowsay. We'll want to use the docker.io/fedora:29 image.

As a part of the build process, ansible-container makes use of a container called
the conductor—essentially, this is a prebuilt container image from which our
target container can be built, deployed, and run. It contains, among other
important things, the Ansible runtimes, associated libraries, and a Python
environment, as required by Ansible. It is important that, if possible, this
container matches the operating system that you are building as closely as
possible; otherwise, the differing versions of Python or other libraries could
cause problems. Thus, we have defined a Fedora 29-based conductor container
by using the conductor_base parameter.

The build process expects container.yml to reference at least one role for the
build process; we will create this role shortly, and we'll call it cowsay. This
time, we'll expose port 8081, just to differentiate it from previous examples.

We'll set the command for this service to nginx:

version: "2"

services:

 cowsay:

 from: docker.io/fedora:29

 conductor_base: fedora:29

 roles:

 - cowsay

 ports:

 - "8081:80"

 command: ['nginx']

With the service established, we need to write the plays to configure the base
image to our needs. First, we will create a skeletal role directory:

mkdir -p roles/cowsay/tasks/

Then, we will create the roles/cowsay/tasks/main.yml file. The tasks in this file
should match the tasks that we used in a previous example, with one
exception—a new set_fact task. When ansible-container builds our new
container, the Python environment from the previously mentioned conductor
container is mounted in /_usr in the target container, and is used for all tasks.
This is fine until we come to using the dnf module, which will not run from
this mounted Python environment, as it is not installed in there! To get
around this, we will use set_fact to define the ansible_python_interpreter host
variable, and point it at the Python environment that we installed in the first
task:

- name: install things

 raw: dnf install -y python-dnf

- name: use local python

 set_fact:

 ansible_python_interpreter: /usr/bin/python

- name: install things

 dnf:

 name: ['nginx', 'cowsay']

- name: configure nginx

 lineinfile:

 line: "daemon off;"

 dest: /etc/nginx/nginx.conf

- name: boop

 shell: cowsay boop > /usr/share/nginx/html/index.html

Unlike in the previous example, we do not need to add a task to run nginx; that
will happen when the container is started.

Using ansible-container build
For this example, no other files need to be modified from their initial states.
We're now ready to build the images, which is done with the build sub-
command of ansible-container:

If the build process fails with an error, you might have docker-py installed, which, at the
time of writing, unfortunately breaks ansible-container. In addition, ansible-container only
works with a patched version (2.7.0) of the docker Python module. The fix involves
removing these modules and then reinstalling and patching the required docker module.
Hopefully, in the future, this will no longer be required.

The build process will download a Docker image called the ansible-conductor.
Ansible will be run from within this container, and used to orchestrate the
changes on the target container (called ansible-cowsay in the following
example). It'll launch a container using that image and map in the contents
from the _usr/ directory. Then, it will launch the service container and execute
the playbook against it. After the playbook finishes, the configured service
container will be saved as a Docker image in the local system, but not
exported to the filesystem (there are native Docker commands to handle this,
if it is required).

The image name comprises two parts: the first part is named after the base
directory that ansible-container was run from (ansible, in this case), and the
second part from the service name (cowsay), as we can see with docker images:

Once all of the prerequisite steps are complete, we will have a neat
framework for building Docker container images without the need for a
Dockerfile, so all of our build processes can remain in Ansible roles, adding to
their portability.

Using ansible-container run
With the image created, we can now run the service. We can launch the
container manually with docker or write a playbook for it to launch with
Ansible. Both of these approaches are entirely feasible, but require more
effort than necessary, as we've already defined how this container should be
launched in our container.yml file. We can utilize this configuration and simply
use the run sub-command of ansible-container:

There are a few optional arguments for the run sub-command. You can pick a
specific service to start, attach volumes, define variables, toggle production
configuration, and so on. The argument that we're interested in is the --
detached argument, as it will run the application in the background, giving
control back to the Terminal:

The run sub-command will use the Ansible Container to bring up the service
container(s). At this point, we should be able to see the container running in
docker ps and communicate with the container to see what our cow has to say:

This example barely scratches the surface of what's possible with Ansible
Container. The control files support templating values to make quite dynamic
service arrangements, which can easily be tested locally and then pushed into
a production deployment system, such as Kubernetes. More features are
being added, and the functionality may change, so be sure to check the
documentation before getting started with Ansible Container, at http://docs.ans
ible.com/ansible-container/.

http://docs.ansible.com/ansible-container/

Summary
DevOps has pushed automation in many new directions, including the
containerization of applications, and even the creation of an infrastructure
itself. Cloud computing services enable self-service management of fleets of
servers for running services. Ansible can easily interact with these services to
provide the automation and orchestration engine.

In this chapter, you learned how to manage on-premise cloud infrastructures,
such as OpenStack, using Ansible. We then extended this with examples of
public cloud infrastructure provision on both AWS and Microsoft Azure.
Finally, you learned how to interact with Docker using Ansible, and how to
neatly package Docker service definitions using Ansible Container.

Ansible can start just about any host, except for the one that it is running on,
and with proper credentials, it can create the infrastructure that it wants to
manage, either for one-off actions or to deploy a new version of an
application into a production container management system. The end result is
that once your hardware is in place and your service providers are configured,
you can manage your entire infrastructure through Ansible, if you so desire!

In the final chapter of this book, we will look at a new and rapidly growing
area of automation: network provisioning with Ansible.

Network Automation
Historically, a network consisted of mostly hardware with just a modicum of
software involvement. Changing the topology of it involved installing and
configuring new switches or blades in a chassis or, at the very least, re-
patching some cables. Now, the scenario has changed, and the complex
infrastructures built to cater for multi-tenant environments such as cloud
hosting, or microservice-based deployments, require a network that is more
agile and flexible. This has led to the emergence of Software Defined
Networking (SDN), an approach that centralizes the network configuration
(where historically it was configured on a per-device basis) and results in
network topology being defined as a whole, rather than as a series of
component parts. It is, if you like, an abstraction layer for the network itself
and thus implies that just like infrastructure as a service, networks can now
be defined in code.

Since the last edition of this book was published, a great deal of work has
gone into Ansible to make network automation a core proposition. Not only
can you now define your infrastructure in an Ansible playbook as we
described in the last chapter, but you can define the network supporting it
too.

In this chapter, we will explore this area of rapidly growing importance,
comprising the following topics:

Ansible for network management
Handling multiple device types
Configuring Cumulus Networks switches with Ansible
Best practices

Technical requirements
Check out the following video to see the Code in Action:

http://bit.ly/2ujFGiz

http://bit.ly/2ujFGiz

Ansible for network manage ment
Core network devices, such as switches, routers, and firewalls, have long had
management interfaces, especially in professional environments. Command-
line interfaces have always been popular on such devices as they support
scripting and hence, as you have already guessed, they lend themselves
extremely well to Ansible automation.

Historically, a myriad of challenges have faced teams managing these
devices, including maintaining configuration, coping with the failure/loss of a
device, and obtaining support in the event of an issue. Often, companies
found themselves locked in to a single network vendor (or at best a small
handful) to enable the use of proprietary tools to manage the network. As
with any situation where you are locked into a technology, this carries both
benefits and drawbacks. Add to this the complexity of software-defined
networks that are rapidly changing and evolving, and the challenge becomes
even greater. In this part of this chapter, we will explore how Ansible
addresses these challenges.

Cross-platform support
As we have seen throughout this book, Ansible has been designed to make
automation code portable and reusable in as many scenarios as possible. In
our chapter on infrastructure management, we used almost identical
playbooks to configure infrastructure on four different providers, and the
examples that were given were quite simplistic; we could have improved this
further through the use of roles to remove the repetition of so much code.

In short, Ansible made it possible to write playbooks that ran on multiple
environments to achieve exactly the same thing with minimal effort once we
had defined the first one. The same is true of networks; if you visit the
network modules index in the Ansible documentation (see https://docs.ansible.
com/ansible/latest/modules/list_of_network_modules.html?highlight=modules), you will
find support for over 50 system types, and this grows with every release.

With such a wide (and growing) range of device support, it is easy for a
network administrator to manage all of their devices from one central place,
without the need for proprietary tools. However, the benefits are greater than
just this.

https://docs.ansible.com/ansible/latest/modules/list_of_network_modules.html?highlight=modules

Configuration portability
As we have discussed already, Ansible code is highly portable. In the world
of network automation, this is extremely valuable. To start with, it means that
you could roll out a configuration change on a development network (or
simulator) and test it, and then be able to roll out exactly the same code
against a different inventory (for example, a production one) once the
configuration has been deemed to have been tested successfully.

The benefits don't stop there, however. Historically, in the event of issues
with a software upgrade or configuration change, the challenge of the
network engineer was to engage the vendor for support and
assistance successfully. This required sending sufficient detail to the vendor
to enable them to at least understand the problem, and most likely want to
reproduce it (especially in the case of firmware issues). When the
configuration for a network is defined in Ansible, the playbooks themselves
can be sent to the vendor to enable them to quickly and accurately understand
the network topology and diagnose the issue. In fact, I has come across cases
where network vendors are now starting to insist on Ansible playbooks with
network configuration when a support ticket is raised because it empowers
them to resolve the issue faster than ever before.

Effective use of ansible-vault ensures that sensitive data is kept out of the
main playbooks and, hence, can easily be removed before being sent to a
third party (and even if it was accidentally, it wouldn't be readable).

Backup, restore, and version control
Although most businesses have robust change control procedures, there is no
guarantee that these are followed 100% of the time, and human beings have
been known to tweak configurations without accurately recording the
changes they've made. Moving the network configuration to Ansible removes
this issue, as the configuration is a known state defined by the playbooks that
can be compared easily to the running configuration using a check run.

Not only is this possible, but configurations can be backed up and restored
with ease. Say, for example, a switch fails and has to be replaced. If the
replacement is the same type, it can be configured and brought into service
rapidly by running the Ansible playbooks, perhaps limited to just the
replacement switch if appropriate.

This lends itself to version control too—network configuration playbooks can
be pushed to a source control repository, enabling configuration versions to
be tracked, and differences over time to be easily examined.

Automated change requests
Often, minor changes to a network might be required for the rollout of a new
project—perhaps a new VLAN or VXLAN, or some previously unused ports
that have been brought into service. The configuration parameters will be
well-defined by a change request and/or network design, and it is probably
not the best use of a highly qualified network engineer to be making simple
configuration changes. Tasks such as these are typically routine, in that the
configuration changes can be templated in an Ansible playbook, with
variables passed to it that have been defined by the change request (for
example, port numbers and VLAN membership details).

This then frees up the engineers' time for more important work, such as the
design of new architectures, and new product research and testing.

In fact, coupled with the use of a package such as AWX (as we discussed
earlier in this book), simple and well-tested changes could be completely
automated, or passed to a frontline team to be executed safely by simply
passing in the required parameters. In this way, the risk of human error is
significantly reduced, regardless of the skillset of the person performing the
change.

With these benefits well-established and understood, let's proceed to look at
how we might start writing playbooks to handle a multi-device network.

Handling multiple device types
In a world where we are not locked into a single vendor, it is important to
know how we might handle the different network devices in an infrastructure.
We established in the last chapter that for different infrastructure providers, a
similar process was established for each one in terms of getting Ansible to
interact with it. This can be a little different with switches, as not all
command-line switch interfaces are created the same. Some, such as on a
Cumulus Networks switch, use straightforward SSH connectivity, meaning
that everything we have learned about in this book so far on connecting to an
SSH capable device still applies. However, other devices, such as F5 BIG-IP,
do not use such an interface and therefore require the module to be run from
the Ansible host, and the configuration parameters to be passed to the module
directly as opposed to using host variables such as ansible_ssh_user.

It is not expected that many of the readers of this book will have access to a
wide variety of network hardware to use in the examples in this chapter.
Instead, in this part of this chapter, we will go into more detail on the process
to be employed when automating a new network device for the first time so
that you have the knowledge to apply this to your own situation.

Researching your modules
Your first task when working with any networking device is to understand
what module you need to use with Ansible. This will be a function of two
things:

What device do you wish to automate the management of?
What task(s) do you wish to perform on the device?

Armed with this information, you can consult the module listing in the
Ansible documentation and find out if your devices and desired tasks are
supported. Let's say, for example, that you have an F5 BIG-IP device, and
you want to save and load configuration on this device.

A quick scan on the module listing shows that the bigip_config module will do
just what we need, so we can proceed with the module configuration (see the
next section) and then write the desired playbook around this module.

What happens if there is no module for your device, though? In this instance,
you have two choices. Firstly, you could write a new module for Ansible to
perform the tasks you require. This is something you could contribute back to
the community, and Chapter 9, Extending Ansible, has all the details you need
to get started on this task.

Alternatively, if you want to get something up and running quickly,
remember that Ansible can send raw commands in most of the transport
methods it supports. For example, in the author's lab setup, they have a TP-
Link managed switch. There are no native Ansible modules for this—
however, as well as a web-based GUI, this switch also has an SSH
management interface. If I wanted to quickly get something up and running, I
could use Ansible's shell or command modules to send raw commands over SSH
to the switch. Naturally, this solution lacks elegance and makes it difficult to
write playbooks that are idempotent, but nonetheless, it does enable me to get
up and running quickly with Ansible and this device.

This captures the beauty of Ansible—the ease with which new devices can be
managed with it with minimal effort, and how, with just a little more effort, it
can be extended for the benefit of the community.

Configuring your modules
As we have already covered the use of the shell and command modules, as well
as extending Ansible, earlier in this book, we will proceed with the case
where we have found a module we want to work with. As you may have
noticed in some earlier chapters, although Ansible includes many modules
out of the box, not all of them work straight away.

Ansible is written in Python, and, in most cases, where there are
dependencies, these will be Python modules. The important thing is to review
the documentation. For example, take the bigip_config module we selected in
the last section. A quick review of the Requirements section of the
documentation shows that this requires (at the time of writing) the Python
module f5-sdk, version 3.0.16 or newer.

There are multiple ways to install this—some operating systems may have a
native package built, and if this is available, then provided it meets the
version requirements, it is perfectly fine to use this. Indeed, it may be
advantageous in terms of vendor support. However, if such a package is not
available, Python modules can easily be installed using the pip tool.
Assuming this is already on your system, the installation is as simple as using
the following code:

sudo p ip install f5-sdk

Also, be sure to review the Notes section of the documentation. Continuing
with this example, we can see that it only supports BIG-IP software version
12 and newer, so if you are on an earlier version, you will have to find
another route to automate your device (or upgrade the software if this is an
acceptable path).

Writing your playbooks
Once your modules are configured, and all requirements (be they Python
module dependencies or device software ones) are met, it's time to start
writing your playbook. This should be a simple task of following the
documentation for the module. Let's suppose we want to reset the
configuration on an F5 BIG-IP device. From the documentation, we can see
that authentication parameters are passed to the module itself. Also, the
example code shows the use of the delegate_to task keyword; both of these
clues tell us that the module is not using the native SSH transport of Ansible,
but rather one that is defined in the module itself. Thus, a playbook to reset
the configuration of a single device might look something like this:

- name: reset an F5

 hosts: localhost

 gather_facts: false

 tasks:

 - name: reset my F5

 bigip_config:

 reset: yes

 save: yes

 server: lb.mastery.example.com

 user: admin

 password: mastery

 validate_certs: no

In this case, we are using a textbook example from the documentation to reset
our configuration. Note that as our hosts parameter only defines localhost, we
do not need the delegate_to keyword, since the bigip_config module will be run
from localhost only in this playbook.

In this way, we have automated a simple, but otherwise manual and
repetitive, task that might need to be performed. Running the playbook would
be as simple as executing the following command:

ansible-playbook -i mastery-hosts reset-f5.yaml

Naturally, to actually test this playbook, you would have to have an F5 BIG-

IP device to test against. Not everyone will have this available, so, in the next
section of this chapter, we will move on to demonstrate a real-world example
that everyone reading this book can work with. However, the intent of this
part of this chapter has been to give you a solid overview of integrating your
network devices, whatever they may be, with Ansible. Thus, it is hoped that
even if you have a device that we haven't mentioned here, you understand the
fundamentals of how to get it working.

Configuring Cumulus Networks
switches with Ansible
Most network devices run proprietary software that you can only obtain from
the vendor when you have an active subscription in place. This can make
testing or learning with this software difficult, even if an emulator for the
network devices is available. Fortunately for us, Cumulus Linux exists.
Cumulus Linux (from Cumulus Networks) is an open source network
operating system that can run on a variety of bare metal switches, offering an
open source approach to data center networking.

Even better, they offer a free version of their software that will run on the
hypervisor of your choice for test and evaluation purposes called Cumulus
VX. The examples in this part of this chapter are based on Cumulus VX
version 3.7.3.

Defining our inventory
A quick bit of research shows us that Cumulus VX will use the standard SSH
transport method of Ansible. Furthermore, there is just one module defined
for working with this system—nclu. No prerequisite modules are required to
use this module, so we can proceed straight to defining our inventory.

By default, Cumulus VX boots up with the management interface configured
to get an IP address with DHCP. It also has three other virtual switch ports
for us to test and play with the configuration of. A simple inventory to get
this working would look something like this:

[cumulus]

mastery-switch1 ansible_host=192.168.81.142

[cumulus:vars]

ansible_user=cumulus

ansible_ssh_pass=CumulusLinux!

Note the following:

The IP address specified in ansible_host will almost certainly differ from
mine—make sure you change this to the correct value for your Cumulus
VX virtual machine. You might have to log in to the VM console to get
the IP address.
Normally, you would never put the password in clear text in the
inventory file—however, for simplicity and to save time, we will specify
the default password here. In a real-world use case, always use a Vault,
or set up key-based SSH authentication.

Now, let's test connectivity with the ping module:

As we discussed earlier in this book, the Ansible ping module performs a
complete end-to-end connectivity test, including authentication at the
transport layer. As a result, if you received a successful test result like the one
shown previously, we can proceed with confidence and write our first
playbooks.

Practical examples
The Cumulux VX image comes completely unconfigured (save for the DHCP
client configuration on the management port eth0). It has three switch ports,
that is, swp1, swp2, and swp3. Let's query one of those interfaces to see whether
there is any existing configuration. We can use a simple playbook called
switch-query.yaml to query swp1:

- name: query switch

 hosts: mastery-switch1

 tasks:

 - name: query swp1 interface

 nclu:

 commands:

 - show interface swp1

 register: interface

 - name: print interface status

 debug:

 var: interface

If we run this (exactly as we have run other playbooks), then we will see
something like the following:

This confirms our initial statement about the VM image—we can see that the
switch port is not configured. It is very easy to turn this VM into a simple
layer 2 switch with Ansible and the nclu module. The following playbook,
called switch-l2-configure.yaml, does exactly this:

- name: configure switch

 hosts: mastery-switch1

 tasks:

 - name: bring up ports swp[1-3]

 nclu:

 template: |

 {% for interface in range(1,4) %}

 add interface swp{{interface}}

 add bridge bridge ports swp{{interface}}

 {% endfor %}

 commit: true

 - name: query swp1 interface

 nclu:

 commands:

 - show interface swp1

 register: interface

 - name: print interface status

 debug:

 var: interface

Notice how we are using some clever inline Jinja2 templating to run a for
loop across the three interfaces, saving the need to create repetitive and
cumbersome code. These commands bring up the three switch interfaces and
add them to the default layer 2 bridge.

Finally, the commit: true line applies these configurations immediately to the
switch. Now, if we run this, we will see a different status for swp1:

As we can see, the swp1 interface is now up and part of the bridge, ready to
switch traffic. Note that the task to configure the ports was marked as changed,
since the configuration was applied for the first time here. What happens if
we run the playbook again without performing any other steps on the switch?
Let's see:

This time, the state of this task is ok, meaning that the nclu module did not
detect any changes being applied to the switch. In this way, playbooks that
automate the configuration of our Cumulus Linux switch are idempotent and
result in a consistent state, even when they're run multiple times. This also
means that if the configuration of the switch drifts (for example, due to user
intervention), it is very easy to see that something has changed.
Unfortunately, the nclu module doesn't currently support the check mode of
ansible-playbook, but nonetheless, it still provides a powerful way to
configure and manage your switches.

Automating Cumulux Linux with Ansible really is as simple as that – further
examples are beyond the scope of this book, as they would entail more
advanced usage of the nclu command. Hopefully, however, by means of these
simple examples, it can be seen that the automation of network infrastructure
with Ansible is now no more difficult than automating anything else.

Best practices
All the usual best practices of using Ansible apply when automating network
devices with it. For example, never store passwords in the clear, and make
use of ansible-vault where appropriate. In spite of this, network devices are
their own special class of device when it comes to Ansible, and support for
them really started to flourish from the 2.5 release of Ansible onward. As
such, there are a few special best practices that deserve to be mentioned when
it comes to network automation with Ansible.

Inventory
Make good use of the inventory structure supported by Ansible when it
comes to organizing your network infrastructure, and pay particular attention
to grouping. Doing so will make your playbook development much easier.
For example, suppose you have two switches on your network—one is a
Cumulus Linux Switch, as we examined previously, and the another is a
Cisco IOS-based device. Your inventory may look like this:

[switches:children]

ios

cumulus

[ios]

ios01 ansible_host=ios01.mastery.example.com

[cumulus]

cumulus01 ansible_host=cumulus01.mastery.example.com

We know that we cannot run the nclu module on anything other than a
cumulus switch, so, with some careful use of the when statement, we can build
tasks in playbooks to ensure that we run the correct command on the correct
device. Here is a task that will only run on devices in the cumulus group we
defined in the preceding inventory:

 - name: query swp1 interface

 nclu:

 commands:

 - show interface swp1

 register: interface

 when: inventory_hostname in groups['cumulus']

Similarly, good use of grouping enables us to set variables on a device basis.
Although you would not put passwords in the clear into your inventory, it
might be that your switches of a given type all use the same username (for
example, cumulus in the case of Cumulus Linux devices). Alternatively,
perhaps your IOS devices need specific Ansible host variables set for
connectivity to work, and to achieve the privilege escalation that's required to
perform configuration. Thus, we can extend our preceding inventory example
by adding the following code:

[cumulus:vars]

ansible_user=cumulus

[ios:vars]

ansible_network_os=ios

ansible_become=yes

ansible_become_method=enable

Good inventory structure and variable definition will make the development
of your playbooks a great deal easier, and the resulting code will be more
manageable and easier to work with.

Gathering facts
Ansible includes a number of specific fact-gathering modules for network
devices, and these may well be useful for running conditional tasks, or simply
reporting back data about your devices. The device-specific fact modules are
not run at the start of the playbook run since, at this stage, Ansible does not
know what sort of device it is communicating with. Thus, we must tell it to
gather the facts for each device as appropriate.

There is no specific facts module for Cumulus Linux switches (although,
since they are based on Linux, the standard host facts can still be gathered).
Taking forward the example of our IOS device, we would specifically run
this facts module in our playbook based on some unique key in our inventory.
We know that, in the example inventory we defined in the last section, our
Cisco IOS switches are in the ios group, and also have ansible_network_os set to
ios. We can use either of these as a condition in a when statement to run the
ios_facts module on our switches—as such, the beginning of our playbook
might look like this:

- name: "gather device facts"

 hosts: all

 gather_facts: false

 tasks:

 - name: gather ios facts

 ios_facts:

 when: ansible_network_os == 'ios'

 - name: gather cumulus facts

 setup:

 when: inventory_hostname in groups['cumulus']

Notice that we set gather_facts to false at the beginning of this playbook. This
is done in this way since the standard facts module is intended for Linux-
based hosts, and would fail if run against a network device such as a Cisco
IOS switch.

Jump hosts
Finally, a word on jump hosts. It is common for network devices to be behind
a bastion of jump hosts of some kind for important security reasons. Ansible
provides a number of mechanisms for doing this, depending on the
underlying network transport. For example, SSH connectivity (such as with
Cumulus Linux switches) can make use of SSH's ability to proxy commands.
There are several ways to achieve these, but the simplest is to add an
additional group variable to the inventory. For example, if we can only access
our Cumulus Linux switch via a host called bastion01, our inventory variables
section would look like this:

[cumulus:vars]

ansible_user=cumulus

ansible_ssh_pass=CumulusLinux!

ansible_ssh_common_args='-o ProxyCommand="ssh -W %h:%p -q bastion01"'

The preceding proxy command assumes that password-less authentication is
already configured and working for bastion01.

SSH Proxy commands like this would work for other ansible_connection modes
that are used in network device management, too, including netconf and
network_cli, offering support for jump hosts to handle a wide range of network
devices. As ever, the best method to be sure about the way to handle a
specific type of connectivity is to check the documentation for your specific
network device and follow the specific guidance therein.

Summary
As more and more of our infrastructure gets defined and managed by code, it
becomes ever more important that the network layer can be automated
effectively by Ansible. A great deal of work has gone into Ansible since the
last release of this book in precisely this area, especially since the release of
Ansible 2.5. With these advancements, it is now easy to build playbooks to
automate network tasks, from simple device changes to rolling out entire
network architectures through Ansible. All of the benefits of Ansible relating
to code reuse, portability, and so on are all now available to those who
manage network devices.

In this chapter, you learned about how Ansible enables network management.
You learned effective strategies for handling different device types within
your infrastructure and how to write playbooks for them, and then you
expanded on this with some specific examples on Cumulus Linux. Finally,
you learned about some of the best practices that must be applied when using
Ansible to manage a network infrastructure.

This brings us to the conclusion of this book. I hope you have found it
beneficial, and that it has given you the strategies and tools for managing
everything, from small configuration changes to entire infrastructure
deployments with Ansible.

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by
Packt:

Learning Ansible 2 - Second Edition
Fabio Alessandro Locati

ISBN: 978-1-78646-423-1

Set up Ansible 2 and an Ansible 2 project in a future-proof way
Perform basic operations with Ansible 2 such as creating, copying,
moving, changing, and deleting files, and creating and deleting users)
Deploy complete cloud environments using Ansible 2 on AWS and
DigitalOcean
Explore complex operations with Ansible 2 (Ansible vault, e-mails, and
Nagios)
Develop and test Ansible playbooks
Write a custom module and test it

https://www.packtpub.com/networking-and-servers/learning-ansible-2-second-edition
https://www.packtpub.com/virtualization-and-cloud/security-automation-ansible-2

Security Automation with Ansible 2
Madhu Akula, Akash Mahajan

ISBN: 978-1-78839-451-2

Use Ansible playbooks, roles, modules, and templating to build generic,
testable playbooks
Manage Linux and Windows hosts remotely in a repeatable and
predictable manner
See how to perform security patch management, and security hardening
with scheduling and automation
Set up AWS Lambda for a serverless automated defense
Run continuous security scans against your hosts and automatically fix
and harden the gaps
Extend Ansible to write your custom modules and use them as part of
your already existing security automation programs
Perform automation security audit checks for applications using Ansible
Manage secrets in Ansible using Ansible Vault

Leave a review - let other readers
know what you think
Please share your thoughts on this book with others by leaving a review on
the site that you bought it from. If you purchased the book from Amazon,
please leave us an honest review on this book's Amazon page. This is vital so
that other potential readers can see and use your unbiased opinion to make
purchasing decisions, we can understand what our customers think about our
products, and our authors can see your feedback on the title that they have
worked with Packt to create. It will only take a few minutes of your time, but
is valuable to other potential customers, our authors, and Packt. Thank you!

	Title Page
	Copyright and Credits
	Mastering Ansible Third Edition

	About Packt
	Why subscribe?
	Packt.com

	Contributors
	About the authors
	About the reviewer
	Packt is searching for authors like you

	Preface
	Who this book is for
	What this book covers
	To get the most out of this book
	Download the example code files
	Download the color images
	Code in Action
	Conventions used

	Get in touch
	Reviews

	Section 1: Ansible Overview and Fundamentals
	The System Architecture and Design of Ansible
	Technical requirements
	Ansible version and configuration
	Inventory parsing and data sources
	Static inventory
	Inventory ordering
	Inventory variable data
	Dynamic inventories
	Runtime inventory additions
	Inventory limiting

	Playbook parsing
	Order of operations
	Relative path assumptions
	Play behavior directives
	Execution strategies
	Host selection for plays and tasks
	Play and task names

	Module transport and execution
	Module reference
	Module arguments
	Module blacklisting
	Module transport and execution
	Task performance

	Variable types and location
	Variable types
	Magic variables

	Accessing external data
	Variable precedence
	Precedence order
	Variable group priority ordering
	Merging hashes

	Summary

	Protecting Your Secrets with Ansible
	Technical requirements
	Encrypting data at rest
	Vault IDs and passwords
	Things Vault can encrypt
	Creating new encrypted files
	Password prompt
	Password file
	Password script

	Encrypting existing files
	Editing encrypted files
	Password rotation on encrypted files
	Decrypting encrypted files
	Executing Ansible-playbook with encrypted files

	Mixing encrypted data with plain YAML
	Protecting secrets while operating
	Secrets transmitted to remote hosts
	Secrets logged to remote or local files

	Summary

	Ansible and Windows - Not Just for Linux
	Technical requirements
	Running Ansible from Windows
	Checking your build
	Enabling WSL
	Installing Linux under WSL

	Setting up Windows hosts for Ansible control
	System requirements for automation with Ansible
	Enabling the WinRM listener
	Connecting Ansible to Windows

	Handling Windows authentication and encryption
	Authentication mechanisms
	A note on accounts
	Certificate validation

	Automating Windows tasks with Ansible
	Picking the right module
	Installing software
	Extending beyond modules

	Summary

	Infrastructure Management for Enterprises with AWX
	Technical requirements
	Getting AWX up and running
	Integrating AWX with your first playbook
	Defining a project
	Defining an inventory
	Defining credentials
	Defining a template

	Going beyond the basics
	Role-based access control (RBAC)
	Organizations
	Scheduling
	Auditing
	Surveys
	Workflow templates
	Notifications

	Summary

	Section 2: Writing and Troubleshooting Ansible Playbooks
	Unlocking the Power of Jinja2 Templates
	Technical requirements
	Control structures
	Conditionals
	Inline conditionals

	Loops
	Filtering loop items
	Loop indexing

	Macros
	Macro variables
	name
	arguments
	defaults
	catch_kwargs
	catch_varargs
	caller

	Data manipulation
	Syntax
	Useful built-in filters
	default
	count
	random
	round

	Useful Ansible provided custom filters
	Filters related to task status
	shuffle
	Filters dealing with path names
	basename
	dirname
	expanduser

	Base64 encoding
	Searching for content

	Omitting undefined arguments
	Python object methods
	String methods
	List methods
	int and float methods

	Comparing values
	Comparisons
	Logic
	Tests

	Summary

	Controlling Task Conditions
	Technical requirements
	Defining a failure
	Ignoring errors
	Defining an error condition

	Defining a change
	Special handling of the command family
	Suppressing a change

	Error recovery
	Using the rescue section
	Using the always section
	Handling unreliable environments

	Iterative tasks with loops
	Summary

	Composing Reusable Ansible Content with Roles
	Technical requirements
	Task, handler, variable, and playbook inclusion concepts
	Including tasks
	Passing variable values to included tasks
	Passing complex data to included tasks
	Conditional task includes
	Tagging included tasks

	Task includes with loops
	Including handlers
	Including variables
	vars_files
	Dynamic vars_files inclusion
	include_vars
	extra-vars

	Including playbooks

	Roles
	Role structure
	Tasks
	Handlers
	Variables
	Modules and plugins
	Dependencies
	Files and templates
	Putting it all together

	Role dependencies
	Role dependency variables
	Tags
	Role dependency conditionals

	Role application
	Mixing roles and tasks
	Role includes and imports

	Role sharing
	Ansible Galaxy

	Summary

	Troubleshooting Ansible
	Technical requirements
	Playbook logging and verbosity
	Verbosity
	Logging

	Variable introspection
	Variable subelements
	Subelements versus Python object method

	Debugging code execution
	Playbook debugging
	Debugging local code
	Debugging inventory code
	Debugging playbook code
	Debugging executor code
	Debugging remote code
	Debugging the action plugins

	Summary

	Extending Ansible
	Technical requirements
	Developing modules
	The basic module construct
	Custom modules
	Example – Simple module
	Documenting a module
	Providing fact data
	The check mode
	Supporting check mode
	Handling check mode

	Developing plugins
	Connection-type plugins
	Shell plugins
	Lookup plugins
	Vars plugins
	Fact-caching plugins
	Filter plugins
	Callback plugins
	Action plugins
	Distributing plugins

	Developing dynamic inventory plugins
	Listing hosts
	Listing host variables
	Simple inventory plugin
	Optimizing script performance

	Contributing to the Ansible project
	Contribution submissions
	The Ansible repository
	Executing tests
	Unit tests
	Integration tests
	Code-style tests

	Making a pull request

	Summary

	Section 3: Orchestration with Ansible
	Minimizing Downtime with Rolling Deployments
	Technical requirements
	In-place upgrades
	Expanding and contracting
	Failing fast
	The any_errors_fatal option
	The max_fail_percentage option
	Forcing handlers

	Minimizing disruptions
	Delaying a disruption
	Running destructive tasks only once

	Serializing single tasks
	Summary

	Infrastructure Provisioning
	Technical requirements
	Managing cloud infrastructures
	Creating servers
	Booting virtual servers
	Adding to runtime inventory

	Using OpenStack inventory sources

	Managing a public cloud infrastructure
	Interacting with Docker containers
	Building images
	Building containers without a Dockerfile
	Docker inventory

	Ansible Container
	Using ansible-container init
	Using ansible-container build
	Using ansible-container run

	Summary

	Network Automation
	Technical requirements
	Ansible for network manage ment
	Cross-platform support
	Configuration portability
	Backup, restore, and version control
	Automated change requests

	Handling multiple device types
	Researching your modules
	Configuring your modules
	Writing your playbooks

	Configuring Cumulus Networks switches with Ansible
	Defining our inventory
	Practical examples
	Best practices
	Inventory
	Gathering facts
	Jump hosts

	Summary

	Other Books You May Enjoy
	Leave a review - let other readers know what you think

